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Controller Design

Trade-offs in MIMO feedback design [9.1]:
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Figure 1: One degree-of-freedom feedback

The closed-loop transfer function are written as

y(s) = T (s)r(s) + S(s)d(s)− T (s)n(s) (6.1)

u(s) = K(s)S(s) [r(s)− n(s)− d(s)] (6.2)

where S = (I +GK)−1 and T = GK(I +GK)−1.
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Controller Design

Closed-loop objectives:

1 For disturbance rejection make σ̄(S) small.

2 For noise attenuation make σ̄(T ) small.

3 For reference tracking make σ̄(T ) ≈ σ(T ) ≈ 1.

4 For control energy reduction make σ̄(KS) small.

5 For robust stability in presence of additive perturbation→ σ̄(KS) small.

6 For robust stability in presence of multiplicative output perturbation→ σ̄(T ) small.

The closed-loop requirements 1 to 6 cannot all be satisfied simultaneously.
Feedback design is therefore a trade-off over frequency of conflicting objectives.
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Controller Design

But this is not always as difficult as it looks like because the frequency ranges over
which the objectives are important can be quite different. For example,
disturbance rejection is typically a low-frequency requirement, while noise
attenuation is often only relevant at high frequencies.

In classical loop shaping, it is the loop gain L = GK what is shaped. However,

σ(L)− 1 ≤ 1

σ̄(S)
≤ σ(L) + 1 (6.3)

At frequencies where σ(L) >> 1, we have σ̄(S) ≈ 1/σ(L)

At frequencies where σ̄(L) << 1, we have σ̄(T ) ≈ σ̄(L)

At the bandwidth frequency (1/σ̄(S(jωB)) =
√

2 = 1/41), we have
0.41 ≤ σ(L(jωB)) ≤ 2.41
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Over specified frequency ranges, we can approximate the closed-loop requirements
by the following open-loop objectives:

1 For disturbance rejection make σ(GK) large; valid for frequencies at which
σ(GK)� 1.

2 For noise attenuation make σ̄(GK) small; valid for frequencies at which
σ̄(GK)� 1.

3 For reference tracking make σ(GK) large; valid for frequencies at which
σ(GK)� 1.

4 For control energy reduction make σ̄(K) small; valid for frequencies at which
σ̄(GK)� 1.

5 For robust stability to an additive perturbation make σ̄(K) small; valid for
frequencies at which σ̄(GK)� 1.

6 For robust stability to a multiplicative output perturbation make σ̄(GK)
small; valid for frequencies at which σ̄(GK)� 1.
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Figure 2: Design tradeoff.
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Controller Design

Requirements 1 and 3 are valid and important at low frequencies,
0 ≤ ω ≤ ωl ≤ ωB .

Requirements 2, 4, 5 and 6 are conditions which are valid and important at
high frequencies, ωB ≤ ωh ≤ ω ≤ ∞.

At frequencies where we want high gains (at low frequencies) the
“worst-case” direction is related to σ(L), whereas at frequencies where we
want low gains (at high frequencies) the “worst-case” direction is related to
σ̄(L).
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LQG control [9.2]

Traditional LQR and LQG Problems [9.2.1]:

ẋ = Ax+Bu+ wd (6.4)

y = Cx+ wn (6.5)
where (process/measurement noises are uncorrelated zero-mean Gaussian
stochastic processes with constant power spectral density matrices W and V )

E

{[
wd(t)
wn(t)

] [
wd(τ)T wn(τ)T

]}
=

[
W 0
0 V

]
δ(t− τ) (6.6)

The LQG problem is to find u = K(s)y such that

J = E

{
lim

T→∞

1

T

∫ T

0

[
xTQx+ uTRu

]
dt

}
(6.7)

is minimized with Q = QT ≥ 0 and R = RT > 0.
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The solution of the LQG problem, thanks to the Separation Principle, is
surprisingly simple and elegant. As illustrated in the figure below, the LQG
problem and its solution can be separated into two distinct parts.

Figure 3: Separation Principle
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Controller Design

Optimal State Feedback. The LQR problem, where all the states are known, is
the deterministic initial value problem: given the system ẋ = Ax+Bu with a
non-zero initial state x(0), find the input signal u(t) which takes the system to the
zero state (x = 0) in an optimal manner, i.e. by minimizing the deterministic cost

Jr =

∫ ∞
0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt (6.8)

The optimal solution is u(t) = −Krx(t), where Kr = R−1BTX and
X = XT ≥ 0 is the unique positive semi-definite solution of the algebraic Riccati
equation

ATX +XA−XBR−1BTX +Q = 0. (6.9)
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Kalman Filter. The Kalman filter has the structure of an ordinary state estimator
or observer, as shown in Figure 7, with

˙̂x = Ax̂+Bu+Kf (y − Cx̂) (6.10)

The optimal solution choice of Kf , which minimizes E
{

[x− x̂]T [x− x̂]
}

, is given
by Kf = Y CTV −1 where Y = Y T ≥ 0 is the unique positive semi-definite
solution of the algebraic Riccati equation

Y TA+AY − Y CTV −1CY +W = 0. (6.11)
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Figure 4: LQG control configuration
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Figure 5: LQG control configuration with reference

The controllers is arranged to show its two-degrees-of-freedom structure. What is
the transfer function linking [rT yT ]T to u? What is the steady-state solution if
the closed-loop is stable?
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Example: LQG design with integral action for inverse response process.
The standard LQG design procedure does not give a controller with integral action
(see Figure 5). Therefore, the setup must be augmented with an integrator before
designing the state feedback regulator. The plant is given by

G(s) =
3(−2s+ 1)

(5s+ 1)(10s+ 1)
(6.12)

We choose Q such that only the integrated state y − r is weighted and we choose
R = 1 (only the ratio between Q and R matters and reducing R yields a faster
response). The Kalman fiter is set up so that the integrated states are not
estimated. We select W = wI (process noise directly on the states) with w = 1
and we choose V = 1 (measurement noise) (only the ratio between w and V
matters and reducing V we put more trust in the measurement).
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Figure 6: LQG control configuration with integral action and reference input
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Figure 7: Closed-loop response to unit step in r.

The time response is good and similar to that obtained by a loop-shaping design
in Lecture 2.

Prof. Eugenio Schuster ME 450 - Multivariable Robust Control Spring 2023 16 / 46



Controller Design

H2 and H∞ control [9.3]

General control problem formulation [9.3.1]:
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Figure 8: General control configuration

[
z
v

]
= P (s)

[
w
u

]
=

[
P11(s) P12(s)
P21(s) P22(s)

] [
w
u

]
(6.13)

u = K(s)v (6.14)
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The state-space realization of the generalized plant P is given by

P
s
=

 A B1 B2

C1 D11 D12

C2 D21 D22

 (6.15)

z = Fl(P,K)w (6.16)

where
Fl(P,K) = P11 + P12K(I − P22K)−1P21 (6.17)

H2 and H∞ control involve the minimization of the H2 and H∞ norms of
Fl(P,K) respectively.
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H2 optimal control [9.3.2]:

The standard H2 optimal control problem is to find a stabilizing controller K
which minimizes

‖ F (s)‖2 =

√
1

2π

∫ ∞
−∞

tr (F (jω)F (jω)T ) dω; F
4
= Fl(P,K) (6.18)

For a particular problem the generalized plant P will include the plant model,
the interconnection structure, and the designer specified weighting functions.
This is illustrated for the LQG problem in the next subsection.

Stochastic interpretation: suppose in the general control configuration that
the exogenous input w is white noise of unit intensity. That is:

E
{
w(t)w(τ)T

}
= Iδ(t− τ) (6.19)
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The expected power in the error signal z is then given by:

E

{
lim

T→∞

1

2T

∫ T

−T
z(t)T z(t)dt

}
(6.20)

= tr E
{
z(t)z(t)T

}
=

1

2π

∫ ∞
−∞

tr
(
F (jω)F (jω)T

)
dω

(by Parseval’s Theorem)

= ‖F‖22 = ‖Fl(P,K)‖22 (6.21)

Thus, by minimizing the H2 norm, the output (or error) power of the
generalized system, due to a unit intensity white noise input, is minimized; we
are minimizing the root-mean-square (rms) value of z.

Prof. Eugenio Schuster ME 450 - Multivariable Robust Control Spring 2023 20 / 46



Uncertainty in MIMO Systems

Theorem

Parseval’s Theorem: The sum (or integral) of the square of a function is equal
to the sum (or integral) of the square of its transform, i.e.

∫ ∞
−∞
|x(t)|2dt =

1

2π

∫ ∞
−∞

(
X(ω)X(ω)T

)
dω =

1

2π

∫ ∞
−∞
|X(ω)|2dω (6.22)

where X(ω) = Fω{x(t)} represents the continuous Fourier transform of x(t). The
interpretation of this form of the theorem is that the total energy of a signal can
be calculated by summing power-per-sample across time or, equivalently, by
summing the spectral power across frequency.
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LQG: a special H2 optimal controller [9.3.3]:

ẋ = Ax+Bu+ wd (6.23)

y = Cx+ wn (6.24)

where:

E

{[
wd(t)
wn(t)

] [
wd(τ)T wn(τ)T

]}
=

[
W 0
0 V

]
δ(t− τ) (6.25)

The LQG problem is to find u = K(s)y such that

J = E

{
lim

T→∞

1

T

∫ T

0

[
xTQx+ uTRu

]
dt

}
(6.26)

is minimized with Q = QT ≥ 0 and R = RT > 0.

Prof. Eugenio Schuster ME 450 - Multivariable Robust Control Spring 2023 22 / 46



Controller Design

Define:

z =

[
Q

1
2 0

0 R
1
2

] [
x
u

]
(6.27)

and represent the stochastic inputs wd, wn as[
wd

wn

]
=

[
W

1
2 0

0 V
1
2

]
w (6.28)

where w is a white noise process of unit intensity. Then the LQG cost function is

J = E

{
lim

T→∞

1

T

∫ T

0

z(t)T z(t)dt

}
= ‖Fl(P,K)‖22 (6.29)
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where
z(s) = Fl(P,K)w(s) (6.30)

and the generalized plant P is given by

P =

[
P11 P12

P21 P22

]
s
=


A W

1
2 0 B

Q
1
2 0 0 0

0 0 0 R
1
2

C 0
- - - - - - - - - - - - - - - - -

V
1
2 0

 (6.31)
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Figure 9: The LQG problem: general control configuration
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H∞ optimal control [9.3.4]:

With reference to the general control configuration of Figure 8, the standard H∞
optimal control problem is to find all stabilizing controllers K which minimize

‖Fl(P,K)‖∞ = max
ω

σ̄(Fl(P,K)(jω)) (6.32)

This has a time domain interpretation as the induced (worst-case) 2-norm. Let
z = Fl(P,K)w, then

‖Fl(P,K)‖∞ = max
w(t) 6=0

‖z(t)‖2
‖w(t)‖2

(6.33)

where ‖z(t)‖2 =
√∫∞

0

∑
i |zi(t)|2dt is the 2-norm of the vector signal.
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It is often computationally (and theoretically) simpler to design a sub-optimal
one (i.e. one close to the optimal controller in the sense of the H∞ norm).

Let γmin be the minimum value of ‖Fl(P,K)‖∞ over all stabilizing
controllers K.

Then the H∞ sub-optimal control problem is: given a γ > γmin, find all
stabilizing controllers K such that

‖Fl(P,K)‖∞ < γ
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Mixed-sensitivity H∞ control [9.3.5]:

To optimize performance, minimize ‖w1S‖∞
To minimize control inputs, minimize ‖w2KS‖∞
Compromise: Minimize ∥∥∥∥[ w1S

w2KS

]∥∥∥∥
∞

(6.34)

General setting (Fig. 10): disturbance d as a single exogenous input, error

signal z =
[
zT1 zT2

]T
, where z1 = W1y and z2 = −W2u.
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Figure 10: S/KS mixed-sensitivity optimization in standard form (regulation)
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Thus z1 = W1Sw and z2 = W2KSw and:

P11 =

[
W1

0

]
P12 =

[
W1G
−W2

]
P21 = −I P22 = −G

(6.35)

where the partitioning is such that z1
z2

- - -
v

 =

[
P11 P12

P21 P22

] [
w
u

]
(6.36)

and

Fl(P,K) =

[
W1S
W2KS

]
(6.37)
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Another useful mixed sensitivity optimization problem, is to find a stabilizing
controller which minimizes ∥∥∥∥[ W1S

W2T

]∥∥∥∥
∞

(6.38)

The S/T mixed-sensitivity minimization problem can be put into the standard
control configuration as shown in Figure 11.

P11 =

[
W1

0

]
P12 =

[
−W1G
W2G

]
P21 = I P22 = −G

(6.39)
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Figure 11: S/T mixed-sensitivity optimization in standard form
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H∞ loop-shaping design [9.4]:

We need a design procedure more flexible than mixed-sensitivity H∞ but not as
complicated as µ-synthesis. For simplicity, it should be based on classical
loop-shaping ideas.

Coprime Factorization [4.1.5]:

A useful way to represent systems is the coprime factorization, which may be used
both in state-space and tranfer function forms.

A right coprime factorization of G is given by

G(s) = Nr(s)M−1r (s) (6.40)

where Nr(s) and Mr are stable coprime transfer functions.
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The stability implies that:

Nr(s) should contain all the RHP-zeros of G(s)

Mr should contain as RHP-zeros all the RHP-poles of G(s)

The coprimeness implies that:

there should be no common RHP-zeros (including the point at infinity) in
Nr(s) and Mr, which results in pole-zero cancellation when forming
Nr(s)M−1r (s).

Mathematically, comprimeness means that there exist stable Ur(s) and Vr(s) such
that the following Bezout identity is satisfied:

UrNr + VrMr = I (6.41)
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Similarly, a left coprime factorization of G is given by

G(s) = M−1l (s)Nl(s) (6.42)

where Nl(s) and Ml are stable coprime transfer functions. That is, there exist
stable Ul(s) and Vl(s) such that the following Bezout identity is satisfied:

NlUl +MlVl = I (6.43)

Example

G(s) =
(s− 1)(s+ 2)

(s− 3)(s+ 4)
(6.44)

N(s) =
(s− 1)

(s+ 4)
,M(s) =

(s− 3)

(s+ 2)
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The coprime factorization is NOT unique. We introduce the operator E∗

defined as E∗(s) = ET (−s)
Then, G(s) = Nr(s)M−1r (s) is called a normalized right coprime
factorization if

N∗rNr +M∗rMr = I (6.45)

In this case, Xr(s) =

[
Mr

Nr

]
is a inner transfer function which means that

X∗rXr = I.

Then, G(s) = M−1l (s)Nl(s) is called a normalized left coprime factorization
if

NlN
∗
l +MlM

∗
l = I (6.46)

In this case, Xl(s) = [Ml Nl] is a co-inner transfer function which means
that XlX

∗
l = I.
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Example

G(s) =
(s− 1)(s+ 2)

(s− 3)(s+ 4)
(6.47)

N(s) = k
(s− 1)(s+ 2)

(s2 + k1s+ k2)
,M(s) = k

(s− 3)(s+ 4)

(s2 + k1s+ k2)

for any k and any k1, k2 > 0.

Substituting in (6.45), after some algebra we can obtain k = ±0.71, k1 = 5.67,
and k2 = 8.6.
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If G has a minimal state-space realization

G
s
=

[
A B
C D

]
(6.48)

Then, a minimal state-space representation of a normalized left coprime
factorization is given by

[Nl(s)Ml(s)]
s
=

[
A+HC B +HD H

R−
1
2C R−

1
2D R−

1
2

]
(6.49)

where H = −(BDT + ZCT )R−1, R = I +DDT , and the matrix Z is the
unique positive definite solution to the Riccati equation

(A−BS−1DTC)Z + Z(A−BS−1DTC)T − ZCTR−1CZ +BS−1BT = 0

where S = I +DTD.
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RS for Coprime Factor Uncertainty [8.6.2]:

The condition
RS ⇐⇒ ‖M‖∞ < 1 (6.50)

is tight (not conservative) only when there is a single full perturbation block.

An “exception” to this is when the uncertainty blocks enter or exit from the
same location in the block diagram, because they can be stacked on top of
each other or side by side in an overall ∆ which is then a full matrix.

If we norm-bound the combined (stacked) uncertainty, we then get a tight
RS condition in terms of ‖M‖∞.
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One important uncertainty that falls into this category is the coprime uncertainty,
for which the set of plants is

Gp = (Ml + ∆M )−1(Nl + ∆N ), ‖∆N ∆M‖∞ ≤ ε (6.51)

where G = M−1l Nl is a left coprime factorization of the nominal plant.

Figure 12: Coprime uncertainty
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To test for RS we can rearrange the block diagram into the M∆ structure with

∆ = [∆N ∆M ]; M =

[
K
I

]
(I −GK)−1M−1l (6.52)

We then have
RS ∀‖∆N ∆M‖∞ ≤ ε ⇐⇒ ‖M‖∞ < 1/ε (6.53)

This result is central to the H∞ loop-shaping design procedure.

Good “generic” uncertainty description when no a-priori uncertainty
information is available.

Often used to maximize the uncertainty magnitude ε such that RS is
maintained.

Prof. Eugenio Schuster ME 450 - Multivariable Robust Control Spring 2023 41 / 46



Controller Design

Robust Stabilization [9.4.1]:

For feedback systems with coprime uncertainty, the stability property is robust if
and only if the nominal feedback is stable and

γK =

∥∥∥∥[ K
I

]
(I −GK)−1M−1l

∥∥∥∥
∞
< 1/ε ∀‖∆N ∆M‖∞ ≤ ε (6.54)

The lowest achievable γK and the corresponding maximum stability margin ε were
computed analytically

γmin = ε−1max =
{

1− ‖[Nl Ml]‖2H
}−1/2

= (1 + ρ(XZ))1/2 (6.55)

where ‖ · ‖H denotes Hankel norm and ρ denotes the spectral radius (maximum
eigenvalue).
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For a minimal realization (A,B,C,D) of G(s), Z is the unique positive definite
solution to the algebraic Riccati equation

(A−BS−1DTC)Z+Z(A−BS−1DTC)T−ZCTR−1CZ+BS−1BT = 0 (6.56)

where
R = I +DDT , S = I +DTD (6.57)

and X is the unique positive definite solution to the algebraic Riccati equation

(A−BS−1DTC)TX+X(A−BS−1DTC)−XBS−1BTX+CTR−1C = 0 (6.58)

This formula simplifies considerably for a strictly proper plant, i.e., when D=0;
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A controller that guarantees that∥∥∥∥[ K
I

]
(I −GK)−1M−1l

∥∥∥∥
∞
≤ γ (6.59)

for a specified γ > γmin, is given by

K
s
=

[
A+BF + γ2(LT )−1ZCT (C +DF ) γ2(LT )−1ZCT

BTX −DT

]
F = −S−1(DTC +BTX)

L = (1− γ2)I +XZ

Since we can compute directly γmin, we get an explicit solution by solving just
two Riccati equations and avoid the γ-iteration needed to solve the general H∞
problem.
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A Systematic H∞ Loop-Shaping Procedure [9.4.2]:

Robust stabilization alone is not of much use in practice because the designer is
not able to specify any performance requirements. We can add pre- and
post-compensators to the plant to shape the open-loop singular values prior to
robust stabilization of the “shaped” plant.

Figure 13: Shaped plant and controller
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If W1 and W2 are the pre- and post-compensators respectively, the “shaped”
plant (initial loop shape) Gs is given by

Gs = W2GW1 (6.60)

The controller Ks is synthesized by solving the robust stabilization problem for
the “shaped” plant with a normalized left coprime factorization Gs = M−1s Ns.
The feedback controller for the plant G is then

K = W1KsW2 (6.61)

This procedure contains all the essential ingredients of classical loop-shaping. The
robust stabilization problem can be solved using the formulae presented in the
previous section.
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