
Multivariable Robust Control
Lecture 4 (Meeting 8)

Chapter 3: Introduction to Multivariable Control

Eugenio Schuster

schuster@lehigh.edu
Mechanical Engineering and Mechanics

Lehigh University

Prof. Eugenio Schuster ME 450 - Multivariable Robust Control Spring 2023 1 / 67



Introduction to Multivariable Control

Introduction [3.1]

We consider a MIMO plant with m inputs and l outputs. Thus, the basic transfer
function model is

y(s) = G(s)u(s)

where y is an l × 1 vector, u is an m× 1 vector, and G(s) is an l ×m transfer
function matrix.

MIMO systems show interaction between inputs and outputs. This means
that one input may affect all the outputs.

The main difference between SISO and MIMO systems is the presence of
directions in the MIMO systems.

Most ideas and techniques valid for SISO systems can be extended to MIMO
systems.

The singular value decomposition (SVD) provides a useful way of quantifying
multivariable directionality.

− SISO: absolute value (magnitude) → MIMO: maximum singular value
− Exception: Bode’s stability condition (no generalization in terms of singular values)
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Transfer functions for MIMO systems [3.2]
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Figure 1: Block diagrams for the cascade rule and the feedback rule

1 Cascade rule. (Figure 1(a)) G = G2G1

2 Feedback rule. (Figure 1(b) ) v = (I − L)−1u where L = G2G1

3 Push-through rule.

G1(I −G2G1)−1 = (I −G1G2)−1G1

NOTE: Verified by premultiplying (I −G1G2) and postmultiplying by (I −G2G1).
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Introduction to Multivariable Control

MIMO Rule: Start from the output, move backwards. If you exit
from a feedback loop then include a term (I − L)−1 where L is the
transfer function around that loop (evaluated against the signal
flow starting at the point of exit from the loop).

Example
z = (P11 + P12K(I − P22K)−1P21)w (4.1)

Figure 2: Block diagram corresponding to (4.1)
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Negative feedback control systems

Figure 3: Conventional negative feedback control system

L is the loop transfer function when breaking the loop at output of the plant.

L = GK (4.2)

Accordingly

S
∆
= (I + L)−1

output sensitivity (4.3)

T
∆
= I − S = (I + L)−1L = L(I + L)−1

output complementary sensitivity (4.4)

LO ≡ L, SO ≡ S and TO ≡ T .
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Introduction to Multivariable Control

LI is the loop transfer function at the input to the plant

LI = KG (4.5)

Input sensitivity:

SI
∆
= (I + LI)

−1

Input complementary sensitivity:

TI
∆
= I − SI = LI(I + LI)

−1
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Introduction to Multivariable Control

Some relationships:

(I + L)−1 + (I + L)−1L = S + T = I (4.6)

G(I +KG)−1 = (I +GK)−1G (4.7)

GK(I +GK)−1 = G(I +KG)−1K = (I +GK)−1GK (4.8)

T = L(I + L)−1 = (I + L−1)−1 = (I + L)−1L (4.9)

Rule to remember: “G comes first and then G and K alternate in sequence”.
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Multivariable frequency response [3.3]

Obtaining the frequency response from G(s) [3.3.1]:

G(s) = transfer (function) matrix

G(jω) = complex matrix representing response

to sinusoidal signal of frequency ω

Note: d ∈ Rm and y ∈ Rl

-- y
G(s)

d

Figure 4: System G(s) with input d and output y

y(s) = G(s)d(s) (4.10)
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Sinusoidal input to channel j

dj(t) = dj0 sin(ωt+ αj) (4.11)

starting at t = −∞. Output in channel i is a sinusoid with the same frequency

yi(t) = yi0 sin(ωt+ βi) (4.12)

Amplification (gain): yio
djo

= |gij(jω)| (4.13)

Phase shift:
βi − αj = ∠gij(jω) (4.14)

gij(jω) represents the sinusoidal response from input j to output i.
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Example: 2× 2 multivariable system, sinusoidal signals of the same frequency ω
to the two input channels:

d(t) =

[
d1(t)
d2(t)

]
=

[
d10 sin(ωt+ α1)
d20 sin(ωt+ α2)

]
(4.15)

The output signal

y(t) =

[
y1(t)
y2(t)

]
=

[
y10 sin(ωt+ β1)
y20 sin(ωt+ β2)

]
(4.16)

can be computed by multiplying complex matrix G(jω) by complex vector d(ω):

y(ω) = G(jω)d(ω)

y(ω) =

[
y10e

jβ1

y20e
jβ2

]
, d(ω) =

[
d10e

jα1

d20e
jα2

]
(4.17)
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Directions in multivariable systems [3.3.2]:

SISO system (y = Gd): gain

|y(ω)|
|d(ω)|

=
|G(jω)d(ω)|
|d(ω)|

= |G(jω)|

The gain depends on ω, but is independent of |d(ω)|.

MIMO system: input and output are vectors.
⇒ need to “sum up” magnitudes of elements in each vector by use of some norm

‖d(ω)‖2 =

√∑
j

|dj(ω)|2 =
√
d2

10 + d2
20 + · · · (4.18)

‖y(ω)‖2 =

√∑
i

|yi(ω)|2 =
√
y2

10 + y2
20 + · · · (4.19)
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Introduction to Multivariable Control

The gain of the system G(s) is

‖y(ω)‖2
‖d(ω)‖2

=
‖G(jω)d(ω)‖2
‖d(ω)‖2

=

√
y2

10 + y2
20 + · · ·√

d2
10 + d2

20 + · · ·
(4.20)

The gain depends on ω, and is independent of ‖d(ω)‖2. However, for a MIMO
system the gain depends on the direction of the input d.
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Example: Consider the five inputs ( all ‖d‖2 = 1)

d1 =

[
1
0

]
, d2 =

[
0
1

]
, d3 =

[
0.707
0.707

]
,

d4 =

[
0.707
−0.707

]
, d5 =

[
0.6
−0.8

]

For the 2× 2 system

G1 =

[
5 4
3 2

]
(4.21)

The five inputs dj lead to the following output vectors

y1 =

[
5
3

]
, y2 =

[
4
2

]
, y3 =

[
6.36
3.54

]
, y4 =

[
0.707
0.707

]
, y5 =

[
−0.2
0.2

]
with the 2-norms (i.e. the gains for the five inputs)

‖y1‖2 = 5.83, ‖y2‖2 = 4.47, ‖y3‖2 = 7.30, ‖y4‖2 = 1.00, ‖y5‖2 = 0.28
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Figure 5: Gain ‖G1d‖2/‖d‖2 as a function of d20/d10 for G1 in (4.21)
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Introduction to Multivariable Control

The maximum value of the gain in (4.20) as the direction of the input is varied, is
the maximum singular value of G,

max
d6=0

‖Gd‖2
‖d‖2

= max
‖d‖2=1

‖Gd‖2 = σ̄(G) (4.22)

whereas the minimum gain is the minimum singular value of G,

min
d6=0

‖Gd‖2
‖d‖2

= min
‖d‖2=1

‖Gd‖2 = σ(G) (4.23)

NOTE: The first identities hold because the gain is independent of the input
magnitude.
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Eigenvalues are a poor measure of gain [3.3.3]:

Example:

G =

[
0 100
0 0

]
; G

[
0
1

]
=

[
100
0

]
(4.24)

Both eigenvalues are equal to zero, but gain is equal to 100.

Problem: eigenvalues measure the gain for the special case when the inputs and
the outputs are in the same direction (in the direction of the eigenvectors).
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For generalizations of |G| when G is a matrix, we need the concept of a matrix
norm, denoted ‖G‖. Two important properties: triangle inequality

‖G1 +G2‖ ≤ ‖G1‖+ ‖G2‖ (4.25)

and the multiplicative property

‖G1G2‖ ≤ ‖G1‖ · ‖G2‖ (4.26)

ρ(G)
∆
= |λmax(G)| (the spectral radius), does not satisfy the properties of a

matrix norm
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Singular value decomposition [3.3.4]

Any matrix G may be decomposed into its singular value decomposition (H
denotes Hermitian transpose),

G = UΣV H (4.27)

Σ is an l ×m matrix with k = min{l,m} non-negative singular
values, σi, arranged in descending order along its main diagonal;

U is an l × l unitary matrix of output singular vectors, ui,

V is an m×m unitary matrix of input singular vectors, vi,

σi(G) =
√
λi(GHG) =

√
λi(GGH) (4.28)

(GGH)U = UΣΣH , (GHG)V = V ΣHΣ (4.29)
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Example: SVD of a real 2× 2 matrix can always be written as

G =

[
cos θ1 − sin θ1

sin θ1 cos θ1

]
︸ ︷︷ ︸

U

[
σ1 0
0 σ2

]
︸ ︷︷ ︸

Σ

[
cos θ2 ± sin θ2

− sin θ2 ± cos θ2

]T
︸ ︷︷ ︸

V T

(4.30)

U and V involve rotations and their columns are orthonormal.
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Input and output directions. The column vectors of U , denoted ui, represent
the output directions of the plant. They are orthogonal and of unit length
(orthonormal), that is

‖ui‖2 =
√
|ui1|2 + |ui2|2 + . . .+ |uil|2 = 1 (4.31)

uHi ui = 1, uHi uj = 0, i 6= j (4.32)

The column vectors of V , denoted vi, are orthogonal and of unit length, and
represent the input directions.

G = UΣV H ⇒ GV = UΣ (V HV = I)⇒ Gvi = σiui (4.33)

If we consider an input in the direction vi, then the output is in the direction ui.
Since ‖vi‖2 = 1 and ‖ui‖2 = 1 σi gives the gain of the matrix G in this direction.

σi(G) = ‖Gvi‖2 =
‖Gvi‖2
‖vi‖2

(4.34)
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Maximum and minimum singular values. The largest gain for any input
direction is

σ̄(G) ≡ σ1(G) = max
d6=0

‖Gd‖2
‖d‖2

=
‖Gv1‖2
‖v1‖2

(4.35)

The smallest gain for any input direction is

σ(G) ≡ σk(G) = min
d6=0

‖Gd‖2
‖d‖2

=
‖Gvk‖2
‖vk‖2

(4.36)

where k = min{l,m}. For any vector d we have

σ(G) ≤ ‖Gd‖2
‖d‖2

≤ σ̄(G) (4.37)
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Define u1 = ū, v1 = v̄, uk = u and vk = v. Then

Gv̄ = σ̄ū, Gv = σ u (4.38)

v̄ corresponds to the input direction with largest amplification, and ū is the
corresponding output direction in which the inputs are most effective. The
directions involving v̄ and ū are sometimes referred to as the “strongest”,
“high-gain” or “most important” directions.
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Example:

G1 =

[
5 4
3 2

]
(4.39)

The singular value decomposition of G1 is

G1 =

[
0.872 0.490
0.490 −0.872

]
︸ ︷︷ ︸

U

[
7.343 0

0 0.272

]
︸ ︷︷ ︸

Σ

[
0.794 −0.608
0.608 0.794

]H
︸ ︷︷ ︸

V H

The largest gain of 7.343 is for an input in the direction v̄ =

[
0.794
0.608

]
, the smallest gain

of 0.272 is for an input in the direction v =

[
−0.608
0.794

]
. Since in (4.39) both inputs affect

both outputs, we say that the system is interactive.
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The system is ill-conditioned, that is, some combinations of the inputs have a
strong effect on the outputs, whereas other combinations have a weak effect on
the outputs. Quantified by the condition number: σ̄/σ = 7.343/0.272 = 27.0.

Example: Shopping cart. Consider a shopping cart (supermarket trolley) with
fixed wheels which we may want to move in three directions; forwards (maximum
singular value), sideways (medium singular value) and upwards (minimum singular
value). For the shopping cart the gain depends strongly on the input direction, i.e.
the plant is ill-conditioned.
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Example: Distillation process. Steady-state model of a distillation column

G =

[
87.8 −86.4
108.2 −109.6

]
(4.40)

Since the elements are much larger than 1 in magnitude there should be no
problems with input constraints. However, the gain in the low-gain direction is
only just above 1.

G =

[
0.625 −0.781
0.781 0.625

]
︸ ︷︷ ︸

U

[
197.2 0

0 1.39

]
︸ ︷︷ ︸

Σ

[
0.707 −0.708
−0.708 −0.707

]H
︸ ︷︷ ︸

V H

(4.41)

The distillation process is ill-conditioned, and the condition number is
197.2/1.39 = 141.7.
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Singular values for performance [3.3.5]:

Maximum singular value is very useful in terms of frequency-domain performance
and robustness.

Performance measure for SISO systems:

|e(ω)|/|r(ω)| = |S(jω)|

Generalization for MIMO systems ‖e(ω)‖2/‖r(ω)‖2

σ(S(jω)) ≤ ‖e(ω)‖2
‖r(ω)‖2

≤ σ̄(S(jω)) (4.42)
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For performance we want the gain ‖e(ω)‖2/‖r(ω)‖2 small for any direction of r(ω)

σ̄(S(jω)) < 1/|wP (jω)|, ∀ω ⇔ σ̄(wPS) < 1,∀ω
⇔ ‖wPS‖∞ < 1 (4.43)

where the H∞ norm is defined as the peak of the maximum singular value of the
frequency response

‖M(s)‖∞
∆
= max

ω
σ̄(M(jω)) (4.44)
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Typical singular values of S(jω) in Figure 6.
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Figure 6: Singular values of S for a 2× 2 plant with RHP-zero
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Bandwidth, ωB : frequency where σ̄(S) crosses 1√
2

= 0.7 from below. Since

S = (I + L)−1, the singular values inequality

σ(A)− 1 ≤ 1

σ̄(I +A)−1
≤ σ(A) + 1

yields

σ(L)− 1 ≤ 1

σ̄(S)
≤ σ(L) + 1 (4.45)

low ω : σ(L)� 1⇒ σ̄(S) ≈ 1
σ(L)

high ω: σ̄(L)� 1⇒ σ̄(S) ≈ 1
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Introduction to MIMO robustness [3.7]

Motivating robustness example no. 1: Spinning Satellite [3.7.1]:

Angular velocity control of a satellite spinning about one of its principal axes:

G(s) =
1

s2 + a2

[
s− a2 a(s+ 1)
−a(s+ 1) s− a2

]
; a = 10 (4.46)

A minimal, state-space realization, G = C(sI −A)−1B +D, is

[
A B
C D

]
=


0 a 1 0
−a 0 0 1
1 a 0 0
−a 1 0 0

 (4.47)
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Poles at s = ±ja For stabilization:

K = I

T (s) = GK(I +GK)−1 =
1

s+ 1

[
1 a
−a 1

]
(4.48)

Note that T11(s) = 1
s+1

∆
= L1(s)

1+L1(s) . Therefore L1(s) = 1
s .
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Nominal stability (NS). Two closed loop poles at s = −1 and

Acl = A−BKC =

[
0 a
−a 0

]
−
[

1 a
−a 1

]
=

[
−1 0
0 −1

]
Stable!

Nominal performance (NP). Figure 7(a)

10−2 100 102
10−1

100

101
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10−4 10−2 100
10−2

100
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(a) Spinning satellite in (4.46)

10−2 100 102
10−1

100

101

102

10−4 10−2 100
10−2

100

102

(b) Distillation process in (4.51)

Figure 7: Typical plots of singular values

σ(L) ≤ 1 ∀ω poor performance in low gain direction
T12, T21 large ⇒ strong interaction
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Robust stability (RS).
Check stability: one loop at a time.
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Figure 8: Checking stability margins “one-loop-at-a-time”
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z1

w1

∆
= L1(s) =

1

s
⇒ GM =∞, PM = 90◦ (4.49)

Good Robustness? NO

Consider perturbation in each feedback channel

u′1 = (1 + ε1)u1, u′2 = (1 + ε2)u2 (4.50)

B′ =

[
1 + ε1 0

0 1 + ε2

]
Closed-loop state matrix:

A′cl = A−B′KC =

[
0 a
−a 0

]
−
[
1 + ε1 0

0 1 + ε2

] [
1 a
−a 1

]
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Characteristic polynomial:

det(sI −A′cl) = s2 + (2 + ε1 + ε2)︸ ︷︷ ︸
a1

s+

+ 1 + ε1 + ε2 + (a2 + 1)ε1ε2︸ ︷︷ ︸
a0

Coefficients must be positive for stability.

Let us consider uncertainty in only one channel at a time. Stability for
(−1 < ε1 <∞, ε2 = 0) and (ε1 = 0,−1 < ε2 <∞) (GM=∞).

But only small simultaneous changes in the two channels: for example, let
ε1 = −ε2, then the system is unstable (a0 < 0) for

|ε1| >
1√

a2 + 1
≈ 0.1

Summary. Checking single-loop margins is inadequate for MIMO problems.
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Motivating robustness example no. 2: Distillation Process [3.7.2]:

Idealized dynamic model of a distillation column,

G(s) =
1

75s+ 1

[
87.8 −86.4
108.2 −109.6

]
(4.51)

The distillation process is ill-conditioned, and the condition number is
197.2/1.39 = 141.7.

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

Figure 9: Response with decoupling controller to filtered reference input r1 = 1/(5s+ 1).
The perturbed plant has 20% gain uncertainty as given by (4.54).
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Inverse-based controller or equivalently steady-state decoupler with a PI controller
(k1 = 0.7)

Kinv(s) =
k1

s
G−1(s) =

k1(1 + 75s)

s

[
0.3994 −0.3149
0.3943 −0.3200

]
(4.52)

Nominal performance (NP).

GKinv = KinvG =
0.7

s
I

first order response with time constant 1.43 (Fig. 9).
Nominal performance (NP) achieved with decoupling controller.
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Robust stability (RS).

S = SI =
s

s+ 0.7
I; T = TI =

1

1.43s+ 1
I (4.53)

In each channel: GM=∞, PM=90◦.

Input gain uncertainty (4.50) with ε1 = 0.2 and ε2 = −0.2:

u′1 = 1.2u1, u′2 = 0.8u2 (4.54)

L′I(s) = KinvG
′ = KinvG

[
1 + ε1 0

0 1 + ε2

]
=

0.7

s

[
1 + ε1 0

0 1 + ε2

]
(4.55)
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Perturbed closed-loop poles are

s1 = −0.7(1 + ε1), s2 = −0.7(1 + ε2) (4.56)

Closed-loop stability as long as the input gains 1 + ε1 and 1 + ε2 remain positive
⇒ Robust stability (RS) achieved with respect to input gain errors for the
decoupling controller.
Robust performance (RP).
Performance with input gain errors is poor (Fig. 9)

SISO: NP+RS ⇒ RP

MIMO: NP+RS 6⇒ RP

RP is not achieved by the decoupling controller.
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Robustness conclusions [3.7.3]: Multivariable plants can display a sensitivity to
uncertainty (in this case input uncertainty) which is fundamentally different from
what is possible in SISO systems.
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General control problem formulation [3.8]

�

-

--

K

P

sensed outputscontrol signals

exogenous inputs
(weighted)

exogenous outputs
(weighted)

u v

zw

Figure 10: General control configuration for the case with no model uncertainty
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The overall control objective is to minimize some norm of the transfer function
from w to z, for example, the H∞ norm. The controller design problem is then:

Find a controller K which based on the information in v, generates a control
signal u which counteracts the influence of w on z, thereby minimizing the
closed-loop norm from w to z.
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Obtaining the generalized plant P [3.8.1]:

The routines in MATLAB for synthesizing H∞ and H2 optimal controllers assume
that the problem is in the general form of Figure 10

Example: One degree-of-freedom feedback control configuration.

Figure 11: One degree-of-freedom control configuration
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Equivalent representation of Figure 11 where the error signal to be minimized is
z = y − r and the input to the controller is v = r − ym

c
ccc q
q

- ? ?

--

?

6

�

---

P

u v

w

{

K

G +
+

+
+

+

+
-

-
z

n
r
d

Figure 12: General control configuration equivalent to Figure 11
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w =

w1

w2

w3

 =

dr
n

 ; z = e = y − r; v = r − ym = r − y − n (4.57)

z = y − r = Gu+ d− r = Iw1 − Iw2 + 0w3 +Gu

v = r − ym = r −Gu− d− n =

= −Iw1 + Iw2 − Iw3 −Gu

and P which represents the transfer function matrix from
[
w u

]T
to
[
z v

]T
is

P =

[
I −I 0 G
−I I −I −G

]
(4.58)

Note that P does not contain the controller. Alternatively, P can be obtained
from Figure 12.
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Remark. In MATLAB we may obtain P via simulink, or we may use the sysic

program in the µ-toolbox. The code in Table 1 generates the generalized plant P in
(4.58) for Figure 11.

Table 1: MATLAB program to generate P

% Uses the Mu-toolbox

systemnames = ’G’; % G is the SISO plant.

inputvar = ’[d(1);r(1);n(1);u(1)]’; % Consists of vectors w and u.

input to G = ’[u]’;

outputvar = ’[G+d-r; r-G-d-n]’; % Consists of vectors z and v.

sysoutname = ’P’;

sysic;
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Including weights in P [3.8.2]:

To get a meaningful controller synthesis problem, for example, in terms of the
H∞ or H2 norms, we generally have to include weights Wz and Ww in the
generalized plant P , see Figure 13.

- - --

�

-

K

P̃
w̃w

Ww Wz
z̃ z

P

Figure 13: General control configuration for the case with no model uncertainty
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That is, we consider the weighted or normalized exogenous inputs w, and the
weighted or normalized controlled outputs z = Wz z̃. The weighting matrices are
usually frequency dependent and typically selected such that weighted signals w
and z are of magnitude 1, that is, the norm from w to z should be less than 1.
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Example: Stacked S/T/KS problem.
Consider an H∞ problem where we want to bound σ̄(S) (for performance), σ̄(T ) (for
robustness and to avoid sensitivity to noise) and σ̄(KS) (to penalize large inputs).
These requirements may be combined into a stacked H∞ problem

min
K
‖N(K)‖∞, N =

WuKS
WTT
WPS

 (4.59)

where K is a stabilizing controller. In other words, we have z = Nw and the objective is
to minimize the H∞ norm from w to z.
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Figure 14: Block diagram corresponding to generalized plant in (4.59)
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z1 = Wuu

z2 = WTGu

z3 = WPw +WPGu

v = −w −Gu

so the generalized plant P from
[
w u

]T
to
[
z v

]T
is

P =


0 WuI
0 WTG

WP I WPG
−I −G

 (4.60)
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Partitioning the generalized plant P [3.8.3]:

We often partition P as

P =

[
P11 P12

P21 P22

]
(4.61)

so that

z = P11w + P12u (4.62)

v = P21w + P22u (4.63)
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In Example “Stacked S/T/KS problem” we get from (4.60)

P11 =

 0
0

WP I

 , P12 =

WuI
WTG
WPG

 (4.64)

P21 = −I, P22 = −G (4.65)

Note that P22 has dimensions compatible with the controller K in Figure 13
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Analysis: Closing the loop to get N [3.8.4]:

-- z
N

w

Figure 15: General block diagram for analysis with no uncertainty

For analysis of closed-loop performance we may absorb K into the interconnection
structure and obtain the system N as shown in Figure 15 where

z = Nw (4.66)

where N is a function of K.
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To find N , first partition the generalized plant P as given in (4.61)-(4.63),
combine this with the controller equation

u = Kv (4.67)

and eliminate u and v from equations (4.62), (4.63) and (4.67) to yield z = Nw
where N is given by

N = P11 + P12K(I − P22K)−1P21
∆
= Fl(P,K) (4.68)

Here Fl(P,K) denotes a lower linear fractional transformation (LFT) of P with K
as the parameter. In words, N is obtained from Figure 10 by using K to close a
lower feedback loop around P . Since positive feedback is used in the general
configuration in Figure 10 the term (I − P22K)−1 has a negative sign.
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Example: We want to derive N for the partitioned P in (4.64) and (4.65) using the
LFT-formula in (4.68). We get

N =

 0
0

WP I

+

WuI
WTG
WPG

K(I +GK)−1(−I) =

−WuKS
−WTT
WPS



where we have made use of the identities S = (I +GK)−1, T = GKS and I − T = S.

In the MATLAB µ-Toolbox we can evaluate N = Fl(P,K) using the command
N=starp(P,K). Here starp denotes the matrix star product which generalizes the use of
LFTs.
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Further examples [3.8.5]:

Example: Consider the control system in Figure 16, where y1 is the output we want to
control, y2 is a secondary output (extra measurement), and we also measure the
disturbance d. The control configuration includes a two degrees-of-freedom controller, a
feedforward controller and a local feedback controller based on the extra measurement
y2.
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Figure 16: System with feedforward, local feedback and two degrees-of-freedom control
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To recast this into our standard configuration of Figure 10 we define

w =

[
d
r

]
; z = y1 − r; v =


r
y1

y2

d

 (4.69)

K =
[
K1Kr −K1 −K2 Kd

]
(4.70)

We get

P =


G1 −I G1G2

0 I 0
G1 0 G1G2

0 0 G2

I 0 0

 (4.71)

Then partitioning P as in (4.62) and (4.63) yields

P22 =
[
0T (G1G2)T GT2 0T

]T
.
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Deriving P from N [3.8.6]:

For cases where N is given and we wish to find a P such that

N = Fl(P,K) = P11 + P12K(I − P22K)−1P21

it is usually best to work from a block diagram representation. This was illustrated
above for the stacked N in (4.59). Alternatively, the following procedure may be
useful:

1 Set K = 0 in N to obtain P11.
2 Define Q = N − P11 and rewrite Q such that each term has a common

factor R = K(I − P22K)−1 (this gives P22).
3 Since Q = P12RP21, we can now usually obtain P12 and P21 by inspection.
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Example
Weighted sensitivity. We will use the above procedure to derive P when
N = wPS = wP (I +GK)−1,
where wP is a scalar weight.

1 P11 = N(K = 0) = wP I.

2 Q = N − wP I = wP (S − I) = −wPT = −wPGK(I +GK)−1, and we have
R = K(I +GK)−1 so P22 = −G.

3 Q = −wPGR so we have P12 = −wPG and P21 = I, and we get

P =

[
wP I −wPG
I −G

]
(4.72)
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A general control configuration including model uncertainty [3.8.8]:

The general control configuration in Figure 10 may be extended to include model
uncertainty. Here the matrix ∆ is a block-diagonal matrix that includes all
possible perturbations (representing uncertainty) to the system. It is normalized
such that ‖∆‖∞ ≤ 1.

Prof. Eugenio Schuster ME 450 - Multivariable Robust Control Spring 2023 62 / 67



Introduction to Multivariable Control

-

�

- -
-

�

u v

zw

K

P

∆

u∆ y∆

Figure 17: General control configuration for the case with model uncertainty
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Figure 18: General block diagram for analysis with uncertainty included
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Figure 19: Rearranging a system with multiple perturbations into the N∆-structure
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The block diagram in Figure 17 in terms of P (for synthesis) may be transformed
into the block diagram in Figure 18 in terms of N (for analysis) by using K to
close a lower loop around P . The same lower LFT as found in (4.68) applies, and

N = Fl(P,K) = P11 + P12K(I − P22K)−1P21 (4.73)

To evaluate the perturbed (uncertain) transfer function from external inputs w to
external outputs z, we use ∆ to close the upper loop around N (see Figure 18),
resulting in an upper LFT:

z = Fu(N,∆)w; Fu(N,∆)
∆
= N22 +N21∆(I −N11∆)−1N12 (4.74)
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Remark 1 Almost any control problem with uncertainty can be represented by
Figure 17. First represent each source of uncertainty by a perturbation block, ∆i, which
is normalized such that ‖∆i‖ ≤ 1. Then “pull out” each of these blocks from the system
so that an input and an output can be associated with each ∆i as shown in
Figure 19(a). Finally, collect these perturbation blocks into a large block-diagonal matrix
having perturbation inputs and outputs as shown in Figure 19(b).
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