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Elements of Linear System Theory

System Descriptions [4.1]
Let f(u) be a liner operator, u1 and u2 two independent variables, and α1 and α2

two real scalars, then

f(α1u1 + α2u2) = α1f(u1) + α2f(u2) (3.1)

State Space Representation

ẋ(t) = Ax(t) +Bu(t) (3.2)

y(t) = Cx(t) +Du(t) (3.3)

or: [
ẋ
y

]
=

[
A B
C D

] [
x
u

]
, G ,

[
A B
C D

]
(3.4)
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Elements of Linear System Theory

System (3.2)–(3.3) is not a unique description of the input-output behavior of a
linear system. Define new states q = Sx, i.e. x = S−1q. Equivalent state-space
realization (i.e., with same input-output behaviour):

Aq = SAS−1, Bq = SB, Cq = CS−1, Dq = D (3.5)

Dynamical system response x(t) for t ≥ t0

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Bu(τ)dτ (3.6)

For a system with disturbances d and noise n:

ẋ = Ax+Bu+ Ed (3.7)

y = Cx+Du+ Fd+ n (3.8)
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Elements of Linear System Theory

eAt = I +

∞∑
k=1

(At)k

k!
(3.9)

Let Aq = SAS−1 = Λ = diag{λi} be diagonal then

eAt = S−1{diag(eλit)}S

where eλit is the mode associated with eigenvalue λi(A).

Prof. Eugenio Schuster ME 450 - Multivariable Robust Control Spring 2023 4 / 75



Elements of Linear System Theory

Impulse response
The impulse response matrix is

g(t) =

{
0 t < 0
CeAtB +Dδ(t) t ≥ 0

With initial state x(0) = 0, the dynamic response to an arbitrary input u(t) is

y(t) = g(t) ∗ u(t) =

∫ t

0

g(t− τ)u(τ)dτ (3.10)

where ∗ denotes the convolution operator.
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Elements of Linear System Theory

Transfer function representation (Laplace)

G(s) =

∫ ∞
0

g(t)e−stdt (3.11)

Laplace transforms of (3.2) and (3.3) become for x(0) = 0
sx(s) = Ax(s) +Bu(s)

⇒ x(s) = (sI −A)−1Bu(s) (3.12)

y(s) = Cx(s) +Du(s)

⇒ y(s) = (C(sI −A)−1B +D)︸ ︷︷ ︸
G(s)

u(s)
(3.13)

where G(s) is the transfer function matrix.
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Elements of Linear System Theory

Equivalently,

G(s) =
1

det(sI −A)
[Cadj(sI −A)B +D det(sI −A)] (3.14)

From Appendix A.2.1

det(sI −A) =

n∏
i=1

λi(sI −A) =

n∏
i=1

(s− λi(A)) (3.15)
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Elements of Linear System Theory

Inverse system. For a square G(s) we have

G−1 s
=

[
A−BD−1C BD−1

−D−1C D−1

]
(3.16)

If D = 0, set D = εI. Be careful not to introduce RHP zeros with this
modification.

Improper systems cannot be represented in state space form.
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Elements of Linear System Theory

Realization of SISO transfer functions.

G(s) =
βn−1s

n−1 + · · ·+ β1s+ β0

sn + an−1sn−1 + · · ·+ a1s+ a0
(3.17)

y(s) = G(s)u(s) corresponds to

yn(t) + an−1y
n−1(t) + · · ·+ a1y

′(t) + a0y(t) =

βn−1u
n−1(t) + · · ·+ β1u

′(t) + β0u(t)

(3.18)

where yn−1(t) and un−1(t) represent n− 1’th order derivatives, etc.
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Elements of Linear System Theory

Write this as

yn = (−an−1y
n−1 + βn−1u

n−1) + · · ·

· · ·+ (−a1y
′ + β1u

′) + (−a0y + β0u)︸ ︷︷ ︸
x′n︸ ︷︷ ︸

x2
n−1

With the notation ẋ ≡ x′(t) = dx/dt, we get

ẋn = −a0x1 + β0u

ẋn−1 = −a1x1 + xn + β1u

...

ẋ1 = −an−1x1 + x2 + βn−1u
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Elements of Linear System Theory

corresponding to the realization (observer canonical form)

A =



−an−1 1 0 · · · 0 0
−an−2 0 1 0 0

...
...

. . .
...

−a2 0 0 1 0
−a1 0 0 · · · 0 1
−a0 0 0 · · · 0 0


, B =



βn−1

βn−2

...
β2

β1

β0


(3.19)

C =
[
1 0 0 · · · 0 0

]
Example: To obtain the state-space realization of G(s) = s−a

s+a , first bring out a
constant term by division to get

G(s) =
s− a
s+ a

=
−2a

s+ a
+ 1

Thus D = 1. Then (3.19) yields A = −a,B = −2a and C = 1.
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Elements of Linear System Theory

Example: Ideal PID-controller

K(s) = Kc(1 +
1

τIs
+ τDs) = Kc

τIτDs
2 + τIs+ 1

τIs
(3.20)

⇒ Improper ⇒ no realization

Proper PID controller

K(s) = Kc(1 +
1

τIs
+

τDs

1 + ετDs
), ε ≤ 0.1 (3.21)

Four common realizations

D = Kc
1 + ε

ε
(3.22)

Prof. Eugenio Schuster ME 450 - Multivariable Robust Control Spring 2023 12 / 75



Elements of Linear System Theory

1. Diagonalized form (Jordan canonical form)

A =

[
0 0
0 − 1

ετD

]
, B =

[
Kc/τI

Kc/(ε
2τD)

]
, C =

[
1 −1

]
(3.23)

2. Observability canonical form

A =

[
0 1
0 − 1

ετD

]
, B =

[
γ1

γ2

]
, C =

[
1 0

]
(3.24)

where γ1 = Kc(
1

τI
− 1

ε2τD
), γ2 =

Kc

ε3τ2
D

(3.25)
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Elements of Linear System Theory

3. Controllability canonical form

A =

[
0 0
1 − 1

ετD

]
, B =

[
1
0

]
, C =

[
γ1 γ2

]
(3.26)

4. Observer canonical form in (3.19)

A =

[
− 1
ετD

1

0 0

]
, B =

[
β1

β0

]
, C =

[
1 0

]
(3.27)

where β0 =
Kc

ετIτD
, β1 = Kc

ε2τD − τI
ε2τIτD

(3.28)

Note: Transfer function offers more immediate insight.
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Elements of Linear System Theory

State controllability and state observability

State controllability. The dynamical system ẋ = Ax+Bu, or equivalently the
pair (A,B), is said to be state controllable if, for any initial state x(0) = x0, any
time t1 > 0 and any final state x1, there exists an input u(t) such that
x(t1) = x1. Otherwise the system is said to be state uncontrollable.

1. The pair: (A,B) is state controllable if and only if the controllability matrix

C ∆
=
[
B AB A2B · · · An−1B

]
(3.29)

has rank n (full row rank). Here n is the number of states.
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Elements of Linear System Theory

2. From (3.6) one can verify that for x(t1) = x1

u(t) = −BT eA
T (t1−t)Wc(t1)−1(eAt1x0 − x1) (3.30)

where Wc(t) is the Gramian matrix at time t,

Wc(t)
∆
=

∫ t

0

eAτBBT eA
T τdτ (3.31)

Thus (A,B) is state controllable if and only if Wc(t) has full rank (and thus
is positive definite) for any t > 0. For a stable system (A is stable) check

only P
∆
= Wc(∞),

P
∆
=

∫ ∞
0

eAτBBT eA
T τdτ (3.32)
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Elements of Linear System Theory

P may also be obtained as the solution to the Lyapunov equation

AP + PAT = −BBT (3.33)

3. Let pi be the i’th eigenvalue of A and qi the corresponding left eigenvector,
qHi A = piq

H
i . Then the system is state controllable if and only if

qHi B 6= 0,∀i.
Example:

A =

[
−2 −2
0 −4

]
, B =

[
1
1

]
, C =

[
1 0

]
, D = 0

The transfer function

G(s) = C(sI −A)−1B =
1

s+ 4

has only one state.
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Elements of Linear System Theory

1 The controllability matrix has two linearly dependent rows:

C =
[
B AB

]
=

[
1 −4
1 −4

]
.

2 The controllability Gramian is singular

P =

[
0.125 0.125
0.125 0.125

]
3 p1 = −2 and p2 = −4, q1 =

[
0.707 −0.707

]T
and q2 =

[
0 1

]T
.

qH1 B = 0, qH2 B = 1

the first mode (eigenvalue) is not state controllable.

Prof. Eugenio Schuster ME 450 - Multivariable Robust Control Spring 2023 18 / 75



Elements of Linear System Theory

Controllability is a system-theoretic concept important for computation and
realizations; but no practical insight:

1 It says nothing about how the states behave, e.g. it does not imply that one
can hold (as t→∞) the states at a given value.

2 Required inputs may be very large with sudden changes.

3 Some states may be of no practical importance.

4 Existence result which provides no “degree of controllability”.
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Elements of Linear System Theory

State observability. The dynamical system ẋ = Ax+Bu, y = Cx+Du (or the
pair (A,C)) is said to be state observable if, for any time t1 > 0, the initial state
x(0) = x0 can be determined from the time history of the input u(t) and the
output y(t) in the interval [0, t1]. Otherwise the system, or (A,C), is said to be
state unobservable.

1. (A,C) is state observable if and only if the observability matrix

O ∆
=


C
CA

...
CAn−1

 (3.34)

has rank n (full column rank).
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Elements of Linear System Theory

2. For a stable system the observability Gramian

Q
∆
=

∫ ∞
0

eA
T τCTCeAτdτ (3.35)

must have full rank n (and thus be positive definite). Q can also be found as
the solution to the following Lyapunov equation

ATQ+QA = −CTC (3.36)

3. Let pi be the i’th eigenvalue of A and ti the corresponding eigenvector,
Ati = piti. Then the system is state observable if and only if Cti 6= 0,∀i.

Observability is a system theoretical concept but may not give practical insight.
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Elements of Linear System Theory

Kalman’s decomposition
By performing an appropriate coordinate transformation, any system can be
reduce to a decomposition indicating the state that are or aren’t controllable
and/or observable.
ẋ1

ẋ2

ẋ3

ẋ4

 =


A11 A12 0 0
0 A22 0 0
A31 A32 A33 A34

0 A42 0 A44



x1

x2

x3

x4

+


B1

0
B3

0

u

y =
[
C1 C2 0 0

] 
x1

x2

x3

x4
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Elements of Linear System Theory

s1

s3

s2

s4

x1

x3

x2

x4

u y

A state-space realization (A,B,C,D) of G(s) is said to be a minimal realization
of G(s) if A has the smallest possible dimension (i.e., the fewest number of
states). The smallest dimension is called the McMillan degree of G(s). A mode
is hidden if it is not state controllable or observable and thus not appear in the
minimial realization. The state-space realization is minimal if and only if (A,B) is
controllable and (A,C) is observable.
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Elements of Linear System Theory

Stability [4.3]
Definition
A system is (internally) stable if none of its components contains hidden

unstable modes and the injection of bounded external signals at any place in the
system results in bounded output signals measured anywhere in the system.
“internal”, i.e. all the states must be stable not only inputs/outputs.

Definition
State stabilizable, state detectable and hidden unstable modes. A system is

state stabilizable if all unstable modes are state controllable. A system is state
detectable if all unstable modes are state observable. A system with unstabilizable
or undetectable modes is said to contain hidden unstable modes.
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Elements of Linear System Theory

Definition
Poles. The poles pi of a system with state-space description (3.2)–(3.3) are the
eigenvalues λi(A), i = 1, . . . , n of the matrix A. The pole or characteristic

polynomial φ(s) is defined as φ(s)
∆
= det(sI −A) =

∏n
i=1(s− pi). Thus the poles

are the roots of the characteristic equation

φ(s)
∆
= det(sI −A) = 0 (3.37)
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Elements of Linear System Theory

Poles and stability

Theorem

A linear dynamic system ẋ = Ax+Bu is stable if and only if all the poles are in
the open left-half plane (LHP), that is, Re{λi(A)} < 0,∀i. A matrix A with such
a property is said to be “stable” or Hurwitz.

Poles from transfer functions

Theorem

The pole polynomial φ(s) corresponding to a minimal realization of a system with
transfer function G(s), is the least common denominator of all
non-identically-zero minors of all orders of G(s).
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Elements of Linear System Theory

Example:

G(s) =
1

1.25(s+ 1)(s+ 2)

[
s− 1 s
−6 s− 2

]
(3.38)

The minors of order 1 are the four elements all have (s+ 1)(s+ 2) in the
denominator.
Minor of order 2

detG(s) =
(s− 1)(s− 2) + 6s

1.252(s+ 1)2(s+ 2)2
=

1

1.252(s+ 1)(s+ 2)
(3.39)

Least common denominator of all the minors:

φ(s) = (s+ 1)(s+ 2) (3.40)

Minimal realization has two poles: s = −1; s = −2.
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Elements of Linear System Theory

Example: Consider the 2× 3 system, with 3 inputs and 2 outputs,

G(s) =
1

(s+ 1)(s+ 2)(s− 1)
∗

∗
[
(s− 1)(s+ 2) 0 (s− 1)2

−(s+ 1)(s+ 2) (s− 1)(s+ 1) (s− 1)(s+ 1)

]
(3.41)

Minors of order 1:

1

s+ 1
,

s− 1

(s+ 1)(s+ 2)
,
−1
s− 1

,
1

s+ 2
,

1

s+ 2
(3.42)

Minor of order 2 corresponding to the deletion of column 2:
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Elements of Linear System Theory

M2 =
(s− 1)(s+ 2)(s− 1)(s+ 1) + (s+ 1)(s+ 2)(s− 1)2

((s+ 1)(s+ 2)(s− 1))2
=

=
2

(s+ 1)(s+ 2)
(3.43)

The other two minors of order two are

M1 =
−(s− 1)

(s+ 1)(s+ 2)2
, M3 =

1

(s+ 1)(s+ 2)
(3.44)

Least common denominator:

φ(s) = (s+ 1)(s+ 2)2(s− 1) (3.45)

The system therefore has four poles: s = −1, s = 1 and two at s = −2. Note
MIMO-poles are essentially the poles of the elements. A procedure is needed to
determine multiplicity.
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Elements of Linear System Theory

Zeros [4.5]

SISO system: zeros zi are the solutions to G(zi) = 0.

In general, zeros are values of s at which G(s) loses rank.

Example [
Y =

s+ 2

s2 + 7s+ 12
U

]
Compute the response when

u(t) = e−2t, y(0) = 0, ẏ(0) = −1
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Elements of Linear System Theory

L{u(t)} =
1

s+ 2

s2Y − sy(0)− ẏ(0) + 7sY − 7y(0) + 12Y = 1

s2Y + 7sY + 12Y + 1 = 1

⇒ Y (s) = 0

Assumption: g(s) has a zero z, g(z) = 0.
Then for input u(t) = u0e

zt the output is y(t) ≡ 0, t > 0. (with appropriate
initial conditions)
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Elements of Linear System Theory

The state-space equations of a system can be written as:

P (s)

[
x
u

]
=

[
0
y

]
, P (s) =

[
sI −A −B
C D

]
(3.46)

The zeros are then the values s = z for which the polynomial system matrix P (s)
loses rank, resulting in zero output for some non-zero input[

zI −A −B
C D

] [
xz
uz

]
= 0
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Elements of Linear System Theory

The zeros are the solutions of

det

[
zI −A −B
C D

]
= 0

MATLAB

zero = tzero(A,B,C,D)
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Elements of Linear System Theory

Zeros from transfer functions [4.5.2]

Zeros. zi is a zero of G(s) if the rank of G(zi) is less than the normal rank of
G(s). The zero polynomial is defined as z(s) =

∏nz

i=1(s− zi) where nz is the
number of finite zeros of G(s).

Theorem: The zero polynomial z(s), corresponding to a minimal realization of
the system, is the greatest common divisor of all the numerators of all order-r
minors of G(s), where r is the normal rank of G(s), provided that these minors
have been adjusted in such a way as to have the pole polynomial φ(s) as their
denominators.
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Elements of Linear System Theory

Example

G(s) =
1

s+ 2

[
s− 1 4
4.5 2(s− 1)

]
(3.47)

The normal rank of G(s) is 2.

Minor of order 2: detG(s) = 2(s−1)2−18

(s+2)2
= 2 s−4

s+2
.

Pole polynomial: φ(s) = s+ 2.

Zero polynomial: z(s) = s− 4.

Note Multivariable zeros have no relationship with the zeros of the transfer
function elements.
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Elements of Linear System Theory

Example

G(s) =
1

1.25(s+ 1)(s+ 2)

[
s− 1 s
−6 s− 2

]
(3.48)

Minor of order 2 is the determinant

detG(s) =
(s− 1)(s− 2) + 6s

1.252(s+ 1)2(s+ 2)2
=

1

1.252(s+ 1)(s+ 2)
(3.49)

φ(s) = 1.252(s+ 1)(s+ 2)

Zero polynomial = numerator of (3.49)
⇒ no multivariable zeros.
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Elements of Linear System Theory

Example

G(s) =

[
s− 1

s+ 1

s− 2

s+ 2

]
(3.50)

The normal rank of G(s) is 1

no value of s for which G(s) = 0 ⇒ G(s) has no zeros.
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Elements of Linear System Theory

More on poles and zeros[4.6]

Directions of poles and zeros:

Let G(s) = C(sI −A)−1B +D.

Zero directions. Let G(s) have a zero at s = z. Then G(s) loses rank at s = z,
and there exist non-zero vectors uz and yz such that

G(z)uz = 0, yHz G(z) = 0 (3.51)

uz = input zero direction
yz = output zero direction
yz gives information about which output (or combination of outputs) may be
difficult to control.
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Elements of Linear System Theory

Pole directions. Let G(s) have a pole at s = p. Then G(p) is infinite, and we
may write

G(p)up =∞, yHp G(p) =∞ (3.52)

up = input pole direction
yp = output pole direction.

SVD:
G(z/p) = UΣV H

uz = last column in V , yz = last column of U
(corresponding to the zero singular value of G(z))
up = first column in V , yp = first column of U
(corresponding to the infinite singular value of G(p))
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Elements of Linear System Theory

Example
Plant in (3.47) has a RHP-zero at z = 4 and a LHP-pole at p = −2.

G(z) = G(4) =
1

6

[
3 4

4.5 6

]
=

1

6

[
0.55 −0.83
0.83 0.55

] [
9.01 0

0 0

] [
0.6 −0.8
0.8 0.6

]H

uz =

[
−0.80
0.60

]
yz =

[
−0.83
0.55

]
(3.53)

For pole directions consider

G(p+ ε) = G(−2 + ε) =
1

ε2

[
−3 + ε 4

4.5 2(−3 + ε)

]
(3.54)
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Elements of Linear System Theory

The SVD as ε→ 0 yields

G(−2 + ε) =
1

ε2

[
−0.55 −0.83
0.83 −0.55

] [
9.01 0

0 0

] [
0.6 −0.8
−0.8 −0.6

]H

up =

[
0.60
−0.80

]
yp =

[
−0.55
0.83

]
(3.55)

Note: Locations of poles and zeros are independent of input and output
scalings, their directions are not.
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Elements of Linear System Theory

Remarks on poles and zeros [4.6.2]

1. For square systems the poles and zeros of G(s) are “essentially” the poles
and zeros of detG(s).
This fails when zero and pole in different parts of the system cancel when
forming detG(s).

G(s) =

[
(s+ 2)/(s+ 1) 0

0 (s+ 1)/(s+ 2)

]
(3.56)

detG(s) = 1, although the system obviously has poles at −1 and −2 and
(multivariable) zeros at −1 and −2.

2. System (3.56) has poles and zeros at the same locations (at −1 and −2).
Their directions are different. They do not cancel or otherwise interact.

3. There are no zeros if the outputs contain direct information about all the
states; that is, if from y we can directly obtain x (e.g. C = I and D = 0);
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Elements of Linear System Theory

4. Zeros usually appear when there are fewer inputs or outputs than states

5. Moving poles. (a) feedback control (G(I +KG)−1) moves the poles, (b)
series compensation (GK, feedforward control) can cancel poles in G by
placing zeros in K (but not move them), and (c) parallel compensation
(G+K) cannot affect the poles in G.

6. Moving zeros. (a) With feedback, the zeros of G(I +KG)−1 are the zeros
of G plus the poles of K. , i.e. the zeros are unaffected by feedback. (b)
Series compensation can counter the effect of zeros in G by placing poles in
K to cancel them, but cancellations are not possible for RHP-zeros due to
internal stability (see Section 45). (c) The only way to move zeros is by
parallel compensation, y = (G+K)u, which, if y is a physical output, can
only be accomplished by adding an extra input (actuator).
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Example. Effect of feedback on poles and zeros.
SISO plant G(s) = z(s)/φ(s) and K(s) = k.

T (s) =
L(s)

1 + L(s)
=

kG(s)

1 + kG(s)
=

kz(s)

φ(s) + kz(s)
= k

zcl(s)

φcl(s)
(3.57)

Note the following:

1 Zero polynomial: zcl(s) = z(s)
⇒ zero locations are unchanged.

2 Pole locations are changed by feedback.
For example,

k → 0 ⇒ φcl(s)→ φ(s) (3.58)

k →∞ ⇒ φcl(s)→ z(s).z̃(s) (3.59)

where roots of z̃(s) move with k to infinity (complex pattern)
(cf. root locus)
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Internal stability of feedback systems [4.7]
Note: Checking the pole of S or T is not sufficient to determine internal stability
Example (Figure 1). In forming L = GK we cancel the term (s− 1) (a RHP pole-zero
cancellation) to obtain

L = GK =
k

s
, and S = (I + L)−1 =

s

s+ k
(3.60)

S(s) is stable, i.e. transfer function from dy to y is stable. However, the transfer
function from dy to u is unstable:

u = −K(I +GK)−1dy = − k(s+ 1)

(s− 1)(s+ k)
dy (3.61)
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Figure 1: Internally unstable system
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d
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dy u
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G

−K

Figure 2: Block diagram used to check internal stability of feedback system

For internal stability consider

u = (I +KG)−1du −K(I +GK)−1dy (3.62)

y = G(I +KG)−1du + (I +GK)−1dy (3.63)
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Theorem 4.4 The feedback system in Figure 2 is internally stable if and only if all

four closed-loop transfer matrices in (3.62) and (3.63) are stable.

Theorem 4.5 Assume there are no RHP pole-zero cancellations between G(s) and

K(s). Then the feedback system in Figure 2 is internally stable if and only if one of the

four closed-loop transfer function matrices in (3.62) and (3.63) is stable.
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Implications of the internal stability requirement

1 If G(s) has a RHP-zero at z, then L = GK, T = GK(I +GK)−1,
SG = (I +GK)−1G, LI = KG and TI = KG(I +KG)−1 will each have a
RHP-zero at z.

2 If G(s) has a RHP-pole at p, then L = GK and LI = KG also have a
RHP-pole at p, while S = (I +GK)−1,KS = K(I +GK)−1 and
SI = (I +KG)−1 have a RHP-zero at p.
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Exercise: Interpolation constraints. Prove for SISO feedback systems when the
plant G(s) has a RHP-zero z or a RHP-pole p:

G(z) = 0 ⇒ L(z) = 0 ⇔ T (z) = 0, S(z) = 1 (3.64)

G−1(p) = 0 ⇒ L(p) =∞ ⇔ T (p) = 1, S(p) = 0 (3.65)

Remark “Perfect control” implies S ≈ 0 and T ≈ 1.
RHP-zero ⇒ perfect control impossible.
RHP-pole ⇒ perfect control possible.
RHP-poles cause problems when tight (high gain) control is not possible.
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Stabilizing controllers [4.8]
Stable plants
Lemma For a stable plant G(s) the negative feedback system in Figure 2 is
internally stable if and only if Q = K(I +GK)−1 is stable.
Proof: The four transfer functions in (3.62) and (3.63) are

K(I +GK)−1 = Q (3.66)

(I +GK)−1 = I −GQ (3.67)

(I +KG)−1 = I −QG (3.68)

G(I +KG)−1 = G(I −QG) (3.69)

which are clearly all stable if and only if G and Q are stable.
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Consequences: All stabilizing negative feedback controllers for the stable plant
G(s) are given by

K = (I −QG)−1Q = Q(I −GQ)−1 (3.70)

where the “parameter” Q is any stable transfer function matrix. (Identical to the
internal model control (IMC) parameterization of stabilizing controllers.)
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Figure 3: The internal model control (IMC) structure
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Stability analysis in the frequency domain Generalization of Nyquist’s stability
test for SISO systems.
Open and closed-loop characteristic polynomials:

e q
6

---
y

L
-

+r

Figure 4: Negative feedback system
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Open Loop:
L(s) = Col(sI −Aol)−1Bol +Dol (3.71)

Poles of L(s) are the roots of the open-loop characteristic polynomial

φol(s) = det(sI −Aol) (3.72)

Assume no RHP pole-zero cancellations between G(s) and K(s). Then from
Theorem 4.5 internal stability of the closed-loop system is equivalent to the
stability of S(s) = (I + L(s))−1.
The realization of S(s) can be derived as follow:

ẋ = Aolx+Bol(r − y) (3.73)

−e = r − y = r − Colx−Dol(r − y) (3.74)
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or
r − y = (I +Dol)

−1(r − Colx) (3.75)

and
ẋ = (Aol −Bol(I +Dol)

−1Col)x+Bol(I +Dol)
−1r (3.76)

Therefore the state matrix of S(s) is:

Acl = Aol −Bol(I +Dol)
−1Col (3.77)

And the closed-loop characteristic polynomial is

φcl(s)
∆
= det(sI −Acl) = det(sI −Aol +Bol(I +Dol)

−1Col) (3.78)
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Relationship between characteristic polynomials
From (3.71) we get

det(I + L(s)) = det(I + Col(sI −Aol)
−1Bol +Dol) (3.79)

Schur’s formula yields (with A11 = I +Dol, A12 = −Col, A22 = sI −Aol, A21 = Bol)

det(I + L(s)) =
φcl(s)

φol(s)
· c (3.80)

where c = det(I +Dol) is a constant (cf. SISO result from RSI).
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Side calculation:

det

[
I +Dol −Col
Bol sI −Aol

]
= det [I +Dol] det

[
sI −Aol +Bol (I +Dol)

−1
Col

]
= det [sI −Aol] det

[
I +Dol + Col (sI −Aol)−1

Bol

]
Schur’s formula:

det

[
A11 A12

A21 A22

]
= det(A11) · det(A22 −A21A

−1
11 A12)

= det(A22) · det(A11 −A12A
−1
22 A21)
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Theorem: Generalized (MIMO) Nyquist theorem. Let Pol denote the
number of open-loop unstable poles in L(s). The closed-loop system with loop
transfer function L(s) and negative feedback is stable if and only if the Nyquist
plot of det(I + L(s))
i) makes Pol anti-clockwise encirclements of the origin, and
ii) does not pass through the origin.

Note
By “Nyquist plot of det(I + L(s))” we mean “the image of det(I + L(s)) as s
goes clockwise around the Nyquist D-contour”.
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Small gain theorem [4.9.4]:

ρ(L(jω))
∆
= max

i
|λi(L(jω))| (3.81)

Theorem: Spectral radius stability condition.

Consider a system with a stable loop transfer function L(s). Then the closed-loop
system is stable if

ρ(L(jω))
∆
= max

i
|λi(L(jω))| < 1 ∀ω (3.82)
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Proof: Assume the system is unstable. Therefore det(I +L(s)) encircles the origin, and
there is an eigenvalue, λi(L(jω)) which is larger than 1 at some frequency. If
det(I + L(s)) does encircle the origin, then there must exists a gain ε ∈ (0, 1] and a
frequency ω′ such that

det(I + εL(jω′)) = 0 (3.83)

or

∏
i

λi(I + εL(jω′)) = 0 (3.84)

= 1 + ελi(L(jω
′)) = 0 for some i (3.85)

= λi(L(jω
′)) = −1

ε
for some i (3.86)

⇒ |λi(L(jω
′))| ≥ 1 for some i (3.87)

= ρ(L(jω′)) ≥ 1 (3.88)
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Interpretation: If the system gain is less than 1 in all directions (all eigenvalues)
and for all frequencies (∀ω), then all signal deviations will eventually die out, and
the system is stable.
Spectral radius theorem is conservative because phase information is not
considered.
Small Gain Theorem. Consider a system with a stable loop transfer function
L(s). Then the closed-loop system is stable if

‖L(jω)‖ < 1 ∀ω (3.89)

where ‖L‖ denotes any matrix norm satisfying ‖AB‖ ≤ ‖A‖ · ‖B‖, for example
the singular value σ̄(L).
Note The small gain theorem is generally more conservative than the spectral
radius condition in (3.82).
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System norms [4.10]

-- zw
G

Figure 5: System G

Figure 5: System with stable transfer function matrix G(s) and impulse response matrix
g(t).

Question: given information about the allowed input signals w(t), how large can the

outputs z(t) become?

We use the 2-norm,

‖z(t)‖2 =

√∑
i

∫ ∞
−∞
|zi(τ)|2dτ (3.90)
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and consider three inputs:

1 w(t) is a series of unit impulses.

2 w(t) is any signal satisfying ‖w(t)‖2 = 1.

3 w(t) is any signal satisfying ‖w(t)‖2 = 1, but w(t) = 0 for t ≥ 0, and we
only measure z(t) for t ≥ 0.

The relevant system norms in the three cases are the H2, H∞, and Hankel norms,
respectively.
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H2 norm [4.10.1]
G(s) strictly proper.
For the H2 norm we use the Frobenius norm spatially (for the matrix) and
integrate over frequency, i.e.,

‖G(s)‖2
∆
=

√√√√√ 1

2π

∫ ∞
−∞

tr(G(jω)HG(jω))︸ ︷︷ ︸
‖G(jω)‖2F =

∑
ij |Gij(jω)|2

dω (3.91)

G(s) must be strictly proper, otherwise the H2 norm is infinite. By Parseval’s
theorem, (3.91) is equal to the H2 norm of the impulse response

‖G(s)‖2 = ‖g(t)‖2
∆
=

√√√√√
∫ ∞

0

tr(gT (τ)g(τ))︸ ︷︷ ︸
‖g(τ)‖2F =

∑
ij |gij(τ)|2

dτ (3.92)
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Note that G(s) and g(t) are dynamic systems while G(jω) and g(τ) are
constant matrices (for given value of ω or τ).

We can change the order of integration and summation in (3.92) to get

‖G(s)‖2 = ‖g(t)‖2 =

√√√√∑
ij

∫ ∞
0

|gij(τ)|2dτ (3.93)

where gij(t) is the ij’th element of the impulse response matrix, g(t). Thus

H2 norm can be interpreted as the 2-norm output resulting from applying unit

impulses δj(t) to each input, one after another (allowing the output to settle to

zero before applying an impulse to the next input). Thus

‖G(s)‖2 =
√∑m

i=1 ‖zi(t)‖22 where zi(t) is the output vector resulting from

applying a unit impulse δi(t) to the i’th input.
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Numerical computations of the H2 norm.

Consider G(s) = C(sI −A)−1B. Then

‖G(s)‖2 =
√

tr(BTQB) or ‖G(s)‖2 =
√

tr(CPCT ) (3.94)

where Q = observability Gramian
and P = controllability Gramian

Prof. Eugenio Schuster ME 450 - Multivariable Robust Control Spring 2023 67 / 75



Elements of Linear System Theory

G(s) proper.
For the H∞ norm we use the singular value (induced 2-norm) spatially (for the
matrix) and pick out the peak value as a function of frequency

‖G(s)‖∞
∆
= max

ω
σ̄(G(jω)) (3.95)

The H∞ norm is the peak of the transfer function “magnitude”.
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Time domain performance interpretations of the H∞ norm.

Worst-case steady-state gain for sinusoidal inputs at any frequency.

Induced (worst-case) 2-norm in the time domain:

‖G(s)‖∞ = max
w(t)6=0

‖z(t)‖2
‖w(t)‖2

= max
‖w(t)‖2=1

‖z(t)‖2 (3.96)

(In essence, (3.96) arises because the worst input signal w(t) is a sinusoid
with frequency ω∗ and a direction which gives σ(G(jω∗)) as the maximum
gain.)
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Numerical computation of the H∞ norm. Consider

G(s) = C(sI −A)−1B +D

H∞ norm is the smallest value of γ such that the Hamiltonian matrix H has no
eigenvalues on the imaginary axis, where

H =

[
A+BR−1DTC BR−1BT

−CT (I +DR−1DT )C −(A+BR−1DTC)T

]
(3.97)

and R = γ2I −DTD
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Difference between the H2 and H∞ norms:
Frobenius norm in terms of singular values

‖G(s)‖2 =

√
1

2π

∫ ∞
−∞

∑
i

σ2
i (G(jω))dω (3.98)

Thus when optimizing performance in terms of the different norms:

H∞: “push down peak of largest singular value”.

H2: “push down whole thing” (all singular values over all frequencies).
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Example

G(s) =
1

s+ a
(3.99)

H2 norm:

‖G(s)‖2 = (
1

2π

∫ ∞
−∞
|G(jω)|2︸ ︷︷ ︸

1
ω2+a2

dω)
1
2

= (
1

2πa

[
tan−1(

ω

a
)
]∞
−∞

)
1
2 =

√
1

2a

Alternatively: Consider the impulse response

g(t) = L−1

(
1

s+ a

)
= e−at, t ≥ 0 (3.100)
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to get

‖g(t)‖2 =

√∫ ∞
0

(e−at)2dt =

√
1

2a
(3.101)

as expected from Parseval’s theorem.
H∞ norm:

||G(s)||∞ = max
ω
|G(jω)| = max

ω

1

(ω2 + a2)
1
2

=
1

a
(3.102)
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Example
There is no general relationship between the H2 and H∞ norms.

f1(s) =
1

εs+ 1
, f2(s) =

εs

s2 + εs+ 1
(3.103)

||f1||∞ = 1 ||f1||2 =∞
||f2||∞ = 1 ||f2||2 = 0

(3.104)

Why is the H∞ norm so popular? In robust control convenient for representing
unstructured model uncertainty, and because it satisfies the multiplicative
property:

‖A(s)B(s)‖∞ ≤ ‖A(s)‖∞ · ‖B(s)‖∞ (3.105)

What is wrong with the H2 norm? It is not an induced norm and does not
satisfy the multiplicative property.
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Example
Consider again G(s) = 1/(s+ a) in (3.99), for which ‖G(s)‖2 =

√
1/2a.

‖G(s)G(s)‖2 =

√√√√√
∫ ∞

0

| L−1[(
1

s+ a
)2]︸ ︷︷ ︸

te−at

|2

=

√
1

a

1

2a
=

√
1

a
‖G(s)‖22

(3.106)

for a < 1,
‖G(s)G(s)‖2 > ‖G(s)‖2 · ‖G(s)‖2 (3.107)

which does not satisfy the multiplicative property.
H∞ norm does satisfy the multiplicative property

‖G(s)G(s)‖∞ =
1

a2
= ‖G(s)‖∞ · ‖G(s)‖∞
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