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Classical Feedback Control

Frequency Response [2.1]
We use the Frequency Response to describe the response of the system to
sinusoids of varying frequency.
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Classical Feedback Control

Feedback control [2.2]
One dregree-of-freedom controller [2.2.1]
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Figure 1: Block diagram of one degree-of-freedom feedback control system
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Classical Feedback Control

Closed-loop transfer functions [2.2.2]

y = GK(r − y − n) +Gdd

or
(I +GK)y = GKr +Gdd−GKn (2.1)

which implies that

y = (I +GK)−1GK︸ ︷︷ ︸
T

r (2.2)

+ (I +GK)−1︸ ︷︷ ︸
S

Gdd (2.3)

− (I +GK)−1GK︸ ︷︷ ︸
T

n (2.4)
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Classical Feedback Control

Control error:
e = y − r = −Sr + SGdd− Tn (2.5)

Plant input:
u = KSr −KSGdd−KSn (2.6)

Note that:

L = GK (2.7)

S = (I +GK)−1 = (I + L)−1 (2.8)

T = (I +GK)−1GK = (I + L)−1L (2.9)
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Classical Feedback Control

Moreover:

S + T = I (2.10)

Notation :

L = GK loop transfer function

S = (I + L)−1 sensitivity function

T = (I + L)−1L complementary sensitivity function
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Classical Feedback Control

Closed-loop stability [2.3]
Root-locus
Routh-Hurwitz criterion
Nyquist criterion

Example:

G(s) = 3(−2s+1)
(5s+1)(10s+1)

− The model has a right-half plane (RHP) zero at s = 0.5 rad/sec.
− The RHP zero imposes a fundamental limitation on control.
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Figure 2: Effect of proportional gain Kc on closed-loop response y(t).

Matlab: lecture02a Inverse PController Stability.m
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Classical Feedback Control

Closed-loop performance [2.4]

Time-domain specifications

Frequency-domain specifications

Example:

G(s) = 3(−2s+1)
(5s+1)(10s+1)

− The closed-loop system is stable for −1/3 ≤ Kc ≤ 5/2.

− The proportional gain cannot eliminate steady-state tracking error.
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Figure 3: Closed-loop step response y(t) with PI control.

Matlab: lecture02b Inverse PIController Performance.m
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Classical Feedback ControlClassical Feedback Control
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Figure 2: Bode magnitude and phase plots of
L = GK, S and T when
G(s) = 3(−2s+1)

(5s+1)(10s+1) , and K(s) = 1.136(1 + 1
12.7s)

Lecture 2 – p. 8/44

Figure 4: Bode magnitude and phase plots of L = GK, S and T when
G(s) = 3(−2s+1)

(5s+1)(10s+1)
, and K(s) = 1.136(1 + 1

12.7s
).
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Classical Feedback Control

Time domain performance [2.4.2]
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Figure 5: Step response analysis: Rise time (tr), Settling time (ts), Overshoot (A), Peak
time (tp), Decay Ratio (B), Steady-state Offset, Total Variation.

Prof. Eugenio Schuster ME 450 - Multivariable Robust Control Spring 2023 10 / 48



Classical Feedback Control

Rise time (tr): The time it takes for the output to first reach 90% of its final
value, which is usually required to be small

Settling time (ts): The time after which the output remains within ±5% of
its final value, which is usually required to be small

Overshoot: The peak value divided by the final value, which should typically
be less than 1.2 (20%)

Decay ratio: The ratio of the second and first peaks, which should typically
be less than 0.3

Excess variation: The total variation (TV) divided by the overall change at
steady state, which should be as close to 1 as possible

NOTE: For second-order systems there are analytical relationships between time
specifications and location of the poles.
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Classical Feedback Control

Frequency domain performance - Gain and phase margins [2.4.3]

If the Nyquist plot of L crosses the negative real axis between -1 and 0, the the
(upper) gain margin (or gain amplification margin) is defined as

GM = 1/|L(jω180)| (2.11)

where the phase crossover frequency ω180 is where the Nyquist curve of L(jω180)
crosses the negative real axis between -1 and 0, i.e.

∠L(jω180) = −180o (2.12)

If the Nyquist plot of L crosses the negative real axis between −∞ and −1, the
the (lower) gain margin (or gain reduction margin) is defined as

GML = 1/|L(jωL180)| (2.13)

where the phase crossover frequency ωL180 is where the Nyquist curve of
L(jω180) crosses the negative real axis between −∞ and −1.
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Classical Feedback Control

The phase margin is defined as

PM = ∠L(jωc) + 180o (2.14)

where the gain crossover frequency ωc is the frequency where |L(jω)| crosses 1,
i.e.

|L(jωc)| = 1 (2.15)
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Classical Feedback Control

Below, typical Nyquist plot of L(jω) for stable plant. Closed-loop instability
occurs if L(jω) encircles −1.

Classical Feedback Control

Frequency domain performance - Gain and phase margins
See RS I. Below, typical Nyquist plot of L(jω) for stable
plant. Closed-loop instability occurs if L(jω) encircles −1.
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Figure 6: Typical Nyquist plot of L(jω) for stable plant with PM and GM indicated.
Closed-loop instability occurs if L(jω) encircles the critical point −1.
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Classical Feedback Control

Maximum peak criteria

Maximum peaks of sensitivity and complementary sensitivity functions:

MS
4
= max

ω
|S(jω)|; MT

4
= max

ω
|T (jω)| (2.16)

Typically :
MS ≤ 2 (6dB) (2.17)

MT < 1.25 (2dB) (2.18)

Note :

GM ≥ MS

MS − 1
(2.19)

PM ≥ 2 arcsin

(
1

2MS

)
≥ 1

MS
[rad] (2.20)

For example, for MS = 2 we are guaranteed

GM ≥ 2 and PM ≥ 29.0◦.
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Classical Feedback Control

Bandwidth and crossover frequency
Bandwidth is defined as the frequency range [ω1, ω2] over which control is
“effective”. Usually ω1 = 0, and then ω2 = ωB is the bandwidth.

Definition: The (closed-loop) bandwidth, ωB , is the frequency where |S(jω)|
first crosses 1/

√
2 = 0.707(≈ −3 dB) from below.

Definition: The bandwidth in terms of T , ωBT , is the highest frequency at which
|T (jω)| crosses 1/

√
2 = 0.707(≈ −3 dB) from above. (Usually a poor indicator of

performance).

The gain crossover frequency, ωc, is the frequency where |L(jωc)| first crosses 1
from above. For systems with PM < 90◦ we have

ωB < ωc < ωBT (2.21)
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Classical Feedback Control

Controller design [2.5] Three main approaches:
1 The transfer-function shaping approach.

1 Loop shaping. Classical approach in which the magnitude of the open-loop
transfer function, L(jω), is shaped. Usually no optimization is involved.
Exception: H∞ loop-shaping. Original loop-shaping is optimized in second step.

2 Shaping of closed-loop transfer functions, such as S, T and KS
Optimization is usually used ⇒ H∞ optimal control

2 The signal-based approach.
One considers a particular disturbance or reference change and tries to
optimize the closed-loop response ⇒ Linear Quadratic Gaussian (LQG)
control → H2-norm control (frequency dependent weights)

3 The numerical optimization approach.
Multi-objective optimization to optimize directly the true objectives, such as
rise times, stability margins, etc. Computationally difficult (particularly if the
optimization problem is not convex). Optimization may be performed online
⇒ Model Predictive Control (MPC).
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Classical Feedback Control

Loop shaping [2.6]

Shaping of open loop transfer function L(jω):

e = − (I + L)−1︸ ︷︷ ︸
S

r + (I + L)−1︸ ︷︷ ︸
S

Gdd− (I + L)−1L︸ ︷︷ ︸
T

n (2.22)

Fundamental trade-offs:

1 Good disturbance rejection: L large.

2 Good command following: L large.

3 Mitigation of measurement noise: L small.

4 Small magnitude of input signals: K small and L small.

NOTE: Fortunately, the conflicting design objectives are generally in different
frequency ranges, and we can meet most of the objectives by using a large loop
gain L at low frequencies and a small loop gain L at high frequencies above
crossover.
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Classical Feedback Control

Fundamentals of loop-shaping design

Specifications for desired loop transfer function:

1 Gain crossover frequency, ωc, where |L(jωc)| = 1.

2 The shape of L(jω), e.g. slope of |L(jω)| in certain frequency ranges: N = d ln |L|
d lnw

Typically, a slope N = −1 (−20 dB/decade) around crossover, and a larger
roll-off at higher frequencies. The desired slope at lower frequencies depends
on the nature of the disturbance or reference signal.

3 The system type, defined as the number of pure integrators in L(s).

Note:
1. To avoid tracking offset, L(s) must contain at least one integrator for each
integrator in r(s).
2. Slope and phase are dependent. For example: ∠ 1

sn = −n π
2

3. Design of L(s) is most crucial around ωc and ω180 due to stability constraints.
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Classical Feedback Control

Example:

G(s) = 3(−2s+1)
(5s+1)(10s+1)

Chosen loop gain:

L(s) = 3Kc(−2s+1)
s(2s+1)(0.33s+1)

The RHP zero cannot be cancelled by the controller. Therefore, L must
contain the RHP zero of G.

The RHP zero imposes a performance limitation. The crossover frequency
must be ωc < 0.5ωz. In this case, ωz = 0.5.

We require the system to have one integrator (type 1 system)

CONCLUSION: L must have a slope of −20dB/dec at low frequencies and then
roll off with a higher slope at frequencies beyond ωz.
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Classical Feedback Control

Inverse-based controller [2.6.3]

Note: L(s) must contain all RHP-zeros of G(s). Idea for minimum-phase plant:

L(s) =
ωc
s

(2.23)

K(s) =
ωc
s
G−1(s) (2.24)

i.e. controller inverts plant and adds integrator (1/s). Note that the controller
will not be realizable if G(s) has more poles than zeros.

BUT: A slope of N = −1 at all frequencies is not generally desirable, unless
references and disturbances affect the outputs as steps. This is illustrated by the
following example.
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Classical Feedback Control

Example: Disturbance process.

G(s) =
200

10s+ 1

1

(0.05s+ 1)2
, Gd(s) =

100

10s+ 1
(2.25)

Objectives are:

1 Command tracking: rise time (to reach 90% of the final value) less than 0.3 s and
overshoot less than 5%.

2 Disturbance rejection: response to unit step disturbance should stay within the
range [−1, 1] at all times, and should return to 0 as quickly as possible (|y(t)|
should at least be less than 0.1 after 3 s).

3 Input constraints: u(t) should remain within [−1, 1]

Analysis. |Gd(jω)| remains larger than 1 up to ωd ≈ 10 rad/s ⇒ ωc ≈ 10 rad/s.

Note: We do not want ωc higher than necessary because of stability to noise and
stability issues associated with high-gain feedback.
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Classical Feedback Control

Inverse-based controller design.

K0(s) =
ωc
s

10s+ 1

200
(0.05s+ 1)2

≈ ωc
s

10s+ 1

200

0.1s+ 1

0.01s+ 1
,

L0(s) =
ωc
s

0.1s+ 1

(0.05s+ 1)2(0.01s+ 1)
, ωc = 10 (2.26)

0 1 2 3
0

0.5

1

1.5

0 1 2 3
0

0.5

1

1.5

(a) Tracking

0 1 2 3
0

0.5

1

1.5

0 1 2 3
0

0.5

1

1.5

(b) Disturbance

Figure 7: Responses with “inverse-based” controller K0(s) for the disturbance process. Note
excellent tracking response but poor disturbance-rejection response.
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Classical Feedback Control

Loop shaping for disturbance rejection [2.6.4]

e = y = SGdd, (2.27)

to achieve |e(ω)| ≤ 1 for |d(ω)| = 1 (the worst-case disturbance) we require
|SGd(jω)| < 1,∀ω, or

|1 + L| ≥ |Gd| ∀ω (2.28)

or approximately
|L| ≥ |Gd| ∀ω (2.29)

Initial guess:
|Lmin| ≈ |Gd| (2.30)

or
|Kmin| ≈ |G−1Gd| (2.31)

Prof. Eugenio Schuster ME 450 - Multivariable Robust Control Spring 2023 24 / 48



Classical Feedback Control

Controller contains the model of the disturbance.

|Kmin| ≈ |G−1Gd| (2.32)

Summary:

For disturbance rejection, a good choice is a controller that contains the
dynamics (Gd) of the disturbance and inverts the dynamics (G) of the inputs
(at least at frequencies just before crossover).

For disturbance at plant output, Gd = 1, and we get |Kmin| = |G−1|.
Then, an inverse-based controller provides best trade-off between
performance (disturbance rejection) and minimum use of feedback.

For disturbances at plant input we have Gd = G, and we get |Kmin| = 1.
Then, a constant unitary controller offers good trade-off between output
performance and input usage.
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Classical Feedback Control

In addition to satisfying |L| ≈ |Gd| at frequencies around crossover, the desired
loop-shape L(s) may be modified as follows:

1 Around crossover make slope N of |L| to be about −1 for transient
behaviour with acceptable gain and phase margins.

2 Increase the loop gain at low frequencies to improve the settling time and
reduce the steady-state offset → add an integrator → add zero to reduce
phase lag → add gain k > 1 to speed up the response.

|K| = k|s+ ωI
s
||G−1Gd︸ ︷︷ ︸

Kmin

| (2.33)

3 Let L(s) roll off faster at higher frequencies (beyond the bandwidth) in order
to reduce the use of manipulated inputs, to make the controller realizable and
to reduce the effects of noise.

4 L(s) must be selected such closed-loop system is stable
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Classical Feedback Control

Example: Loop-shaping design for the disturbance process.
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Figure 8: Block diagram representation of the disturbance process in (2.25)
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Classical Feedback Control

Step 1. Initial design. K(s) = G−1Gd = 0.5(0.05s+ 1)2.
Make proper:

K1(s) = 0.5 (2.34)

=⇒ offset!
Step 2. More gain at low frequency. To get integral action multiply the
controller by the term s+ωI

s . For ωI = 0.2ωc the phase contribution from s+ωI

s is
arctan(1/0.2)− 90◦ = −11◦ at ωc. For ωc ≈ 10 rad/s, select the following
controller

K2(s) = 0.5
s+ 2

s
(2.35)

=⇒ response exceeds 1, oscillatory, small phase margin
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Classical Feedback Control

Step 3. High-frequency correction. Supplement with “derivative action” by
multiplying K2(s) by a lead-lag term effective over one decade starting at
20 rad/s:

K3(s) = 0.5
s+ 2

s

0.05s+ 1

0.005s+ 1
(2.36)

=⇒ poor reference tracking (simulation)

NOTE: For reference tracking we want the controller to look like G−1

s , while for

disturbance rejection we want the controller to look like G−1Gd

s . We cannot
achieve both goals with a single feedback controller.
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Classical Feedback Control
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(b) Disturbance responses

Figure 9: Loop shapes and disturbance responses for controllers K1, K2 and K3 for the
disturbance process.
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Classical Feedback Control

Figure 10: Alternative loop-shaping designs for the disturbance process.
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Classical Feedback Control

∗Two degrees of freedom design [2.6.5]

Reference tracking: K ∼ G−1

s

Disturbance rejection: K ∼ G−1Gd

s

In order to meet both regulator and tracking performance use Kr (= “prefilter”):
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Figure 11: Two degrees-of-freedom controller
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Classical Feedback Control

Idea:

Design Ky

T = L(I + L)−1 with L = GKy

Desired y = Trefr

=⇒ Kr = T−1Tref (2.37)

Remark:
Practical choice of prefilter is the lead-lag network

Kr(s) =
τleads+ 1

τlags+ 1
(2.38)

τlead > τlag to speed up the response, and τlead < τlag to slow down the response.
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Classical Feedback Control

Example: Two degrees-of-freedom design for the disturbance process.

Adopt Ky = K3. Approximate response by inpection of y3:

T (s) ≈ 1.5
0.1s+1 − 0.5

0.5s+1 = (0.7s+1)
(0.1s+1)(0.5s+1)

Adopt Tr(s) = 1
(0.1s+1) , which yields:

Kr(s) = 0.5s+1
0.7s+1 .

By closed-loop simulations, we slightly modify controller:

Kr3(s) =
0.5s+ 1

0.65s+ 1
· 1

0.03s+ 1
(2.39)

where 1/(0.03s+ 1) included to avoid initial peaking of input signal u(t) above 1.
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Classical Feedback Control
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Figure 12: Tracking responses with the one degree-of-freedom controller (K3) and the
two degrees-of-freedom controller (K3,Kr3) for the disturbance process
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Classical Feedback Control

Example: Loop shaping for a flexible structure.

G(s) = Gd(s) =
2.5s(s2 + 1)

(s2 + 0.52)(s2 + 22)
(2.40)

|Kmin(jω)| = |G−1Gd| = 1 ⇒
K(s) = 1 (2.41)
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(a) Magnitude plot of |G| = |Gd|
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(b) OL & CL disturbance responses with K = 1

Figure 13: Flexible structure in (2.40)
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Classical Feedback Control

Closed-loop shaping [2.8]

Why ?

We are interested in S and T :

|L(jω)| � 1 ⇒ S ≈ L−1; T ≈ 1
|L(jω)| � 1 ⇒ S ≈ 1; T ≈ L

but in the crossover region where |L(jω)| is close to 1, one cannot infer anything
about S and T from |L(jω)|.
Alternative:
Directly shape the magnitudes of closed-loop S(s) and T (s).
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Classical Feedback Control

The term H∞
The H∞ norm of a stable scalar transfer function f(s) is simply the peak value of
|f(jω)| as a function of frequency, that is,

‖f(s)‖∞ ∆
= max

ω
|f(jω)| (2.42)

The symbol ∞ comes from:

max
ω
|f(jω)| = lim

p→∞

(∫ ∞
−∞
|f(jω)|pdω

)1/p

The symbol H stands for “Hardy space”, and H∞ is the set of transfer functions
with bounded ∞-norm, which is simply the set of stable and proper transfer
functions.
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Classical Feedback Control

Weighted sensitivity [2.8.2]

Typical specifications in terms of S:

1 Minimum bandwidth frequency ω∗B .

2 Maximum tracking error at selected frequencies.

3 System type, or alternatively the maximum steady-state tracking error, A.

4 Shape of S over selected frequency ranges.

5 Maximum peak magnitude of S, ‖S(jω)‖∞ ≤M .

Specifications may be captured by an upper bound, 1/|wP (s)|, on ‖S‖.
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Classical Feedback Control
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Figure 14: |S| exceeds its bound 1/|wP | ⇒ ‖wPS‖∞ > 1
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Classical Feedback Control

|S(jω)| < 1/|wP (jω)|, ∀ω (2.43)

⇔ |wPS| < 1, ∀ω ⇔ ‖wPS‖∞ < 1 (2.44)

Typical performance weight:

wP (s) =
s/M + ω∗B
s+ ω∗BA

(2.45)
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Classical Feedback Control
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Figure 15: Inverse of performance weight. Exact/asymptotic plot of 1/|wP (jω)| in (2.45)
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Classical Feedback Control

To get a steeper slope for L (and S) below the bandwidth:

wP (s) =
(s/M1/2 + ω∗B)2

(s+ ω∗BA
1/2)2

(2.46)
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Classical Feedback Control

∗Mixed sensitivity [2.8.3]

In order to enforce specifications on other transfer functions:

‖N‖∞ = max
ω

σ̄(N(jω)) < 1; N =

 wPS
wTT
wuKS

N =

 wPS
wTT
wuKS

 (2.47)

N is a vector and the maximun singular value σ̄(N) is the usual Euclidean vector
norm:

σ̄(N) =
√
|wPS|2 + |wTT |2 + |wuKS|2 (2.48)

The H∞ optimal controller is obtained from

min
K
‖N(K)‖∞ (2.49)
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Classical Feedback Control

Example: H∞ mixed sensitivity design for the disturbance process.

Consider the plant in (2.25), and an H∞ mixed sensitivity S/KS design in which

N =

[
wPS
wuKS

]
(2.50)

Selected wu = 1 and

wP1(s) =
s/M + ω∗B
s+ ω∗BA

; M = 1.5, ω∗B = 10, A = 10−4 (2.51)

=⇒ poor disturbance response
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Classical Feedback Control

To get higher gains at low frequencies:

wP2(s) =
(s/M1/2 + ω∗B)2

(s+ ω∗BA
1/2)2

(2.52)

with M = 1.5, ω∗B = 10, A = 10−4.

Prof. Eugenio Schuster ME 450 - Multivariable Robust Control Spring 2023 46 / 48



Classical Feedback Control
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Figure 16: Inverse of performance weight (dashed line) and resulting sensitivity function
(solid line) for two H∞ designs (1 and 2) for the disturbance process
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Classical Feedback Control
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(a) Tracking response
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(b) Disturbance response

Figure 17: Closed-loop step responses for two alternative H∞ designs (1 and 2) for the
disturbance process
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