ME 433 — STATE SPACE CONTROL

Lecture 10

ME 433 - State Space Control 159



Continuous Dynamic Optimization

1. Distinctions between continuous and discrete systems

1- Continuous control laws are simpler
2- We must distinguish between differentials and variations in a quantity

2. The calculus of variations

If x(¢) is a continuous function of time ¢, then the differentials dx(¢) and dt
are not independent. We can however define a small change in x(¢) that is
independent of dr. We define the variation ox(r), as the incremental
change in x(#) when time ¢ is held fixed.

What is the relationship between dx(¢), dt, and ox(¢)?
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Continuous Dynamic Optimization

Final time variation: dx(T) = 6x(T) + x(T)dT

x(t) a
dx(T)

1L

- Ox(T)

) el N
T

x(T)dT

\
A

Leibniz’s rule: j(x) = fh(x(t),t)dt

dJ = h(x(T).T)dT ~ h(x(t,).t, )dr, + }[hf(x(t),t)éx]dt
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Continuous Dynamic Optimization

3. Continuous Dynamic Optimization

The plant is described by the general nonlinear continuous-time time-
varying dynamical equation

)'c=f(t,x,u), ty<t<T

with initial condition x, given. The vector x has » components and the
vector u has m components.

The problem is to find the sequence u*(¢) on the time interval [z, 7] that
drives the plant along a trajectory x7(¢), minimizes the performance

Index T
J(ty)= ¢ x(T )+ [Le.x(),u() Mt
and such that v

y(7,x(T))=0
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Continuous Dynamic Optimization

We adjoin the constraints (system equations and terminal constraint) to
the performance index J with a multiplier function A(f) € R* and a
multiplier constant v &R? .

I(1y) = (T, x(T)) +v'y(T.x(T)) + [ [L(t,x(t),u(t)) + X (1) ft,xu) - x)]dt
For convenience, we define the Hamiltonian function

H(t,x,u)= L(t,x,u)+ A (t)f(t,x,u)

Thus,

J(t,) = ¢(T.x(T)) + v (T, x(T)) + f [ (£,2(0),u(t) (1)) - (t))'c]dt

ME 433 - State Space Control 163



Continuous Dynamic Optimization

We want to examine now the increment in J due to increments in all
the variables x, A, v, u and ¢. Using Leibniz’s rule, we compute

dJ(t,) = (q’)x +1/va)T dxl.. + (qbt +1/}tTV)dt|T +I/JT‘T dv
+(H - Xx)dil, - (H - X'x)di],

; f v+ HIou— 70k + (H, - 5) o0 Jar

T
We integrate by parts, f Aoxdt =" 6x‘ — — f Al 6xdt , to obtain

d]( ) ((p +Y vV — )\.T) dx|, (¢ + v+ H - )\.TX+)\.T )dt|
w'| dv-(H-Ni+Xx)d +X dx|

+} [(Hx + }L)Téx + Hf(Su + (H/1 - X)Té)L]dt dx(t) = (Sx(t) + )'c(t)dt

0
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Continuous Dynamic Optimization

We assume that ¢, and x(z,) are both fixed and given, then d¢, and dx(,)
are both zero. According to the Lagrange theory the constrained
minimum of J is attained at the unconstrained minimum of J . This is

achieved when 47 =0 for all independent increments in its arguments.
Then, the necessary conditions for a minimum are:

Y, =0

H -x=0=k=H, =f

H +A=0=-A=H =L +Xf
H=L+Af =0

Two-point Boundary-value Problem

(c,bx +YLV - )LT)T dxl.. + (¢t +P; vV + H)T dt]. =0

The initial condition for the Two-point Boundary-value Problem is the
known value for x,. For a fixed T, the final condition is either a desired
value of x(7) or the value of A (T) given by the last equation. This
equation allows for possible variations in the final time 7" — minimum
time problems.
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Continuous Dynamic Optimization

System Properties | SUMMARY | Controller Properties
System Model State Equation
x(t )= f\t . oH
(6)= 7 t.xu) x=a7=f(t,x,u) £ 1,

Perf
erformance Index Costate Equation

J(t0)=qb(T,x(T))+fL(f»x(f)»”(t))df = o _dL A7 %, t<T
Ly ox o0x 0x

Final-state Constraint

( ( )) Stationary Condition

I,xT'))=0 0H oL .0

Y =—+ A g _ 0

Hamiltonian ou Ju ou
Boundary Condition

H(t,x,u,)t)= L(t,x,u)+)t(t)f(t,x,u) .
x(to) given

(qu +lv - )»T)de|T +(¢l +I/JZTV+H)le‘|T =0
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Continuous Dynamic Optimization

The time derivative of the Hamiltonian is
H=H +H 5+H i+ M\ f
=H +H51!1+(Hx +K)f
If u(¢) is an optimal control, then

H=H,

In the time-invariant case, f and L, and therefore H, are not explicit
functions of time.

H =0

Hence, for time-invariant systems and cost functions, the Hamiltonian is
a constant on the optimal trajectory.
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Continuous Dynamic Optimization

4. Hamilton’s Principle in Classical Dynamics

For a conservative system in classical mechanics, "of all possible paths
along which a dynamical system may move from one point to another
within a specified time interval (consistent with any constraints), the
actual path followed is that which minimizes the time integral of the
difference between the kinetic and potential energies”

A- Lagrange’s Equation of Motion:

q generalized coordinate vector (state)
U=q generalized velocities (dynamics)

U (q) potential energy

T(q,u) kinetic energy

L(q,u)= T(q,u)— U(q) Lagrangian of the system
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Continuous Dynamic Optimization

Plant; g=u-= f(q’u)

T
Performance index: J(O)=fL(q, u )t
0

Hamiltonian: H=L+MNu
Costate Equation: )L—aH—aL \
ostate Equation: g g o 9 ol
C aa e )
oH oL q q
Stationary Condition: P +A=0 ) Lagrange Equation

(Mechanics)

Euler’s Equation
(Variational Problems)

In this case, the condition # =0 is a statement of conservation of energy
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Continuous Dynamic Optimization

B- Hamilton’s Equation of Motion:

. oL
Generalized momentum: A=——0o (Stationary Condition)

Iq

Then, the equations of motion can be written in Hamilton’s form:

q' — ﬂ (State Equation)
oA
_ )= ﬁ (Costate Equation)
dq

Hence, in the optimal control problem, the state and costate equations
are a generalized formulation of Hamilton’s equations of motion
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Continuous Dynamic Optimization

Examples:
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Continuous Dynamic Optimization

5. Linear Quadratic Regulator (LQR) Problem

The plant is described by the linear continuous-time dynamical
equation
X = A(t)x + B(t)u,

with initial condition x, given. We assume that the final time T is fixed
and given, and that no function of the final state vy is specified. We want
to find the sequence u"(¢) that minimizes the performance index:

1 175
](to) = ExT(T)S(T)x(T) + 5{(XTQ(t)x + uTR(t)u)dt
Linear because of the system dynamics

Quadratic because of the performance index

Regulator because of the absence of a tracking objective---we are
iInterested in regulation around the zero state.
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Continuous Dynamic Optimization

We adjoin the system equations (constraints) to the performance index
J with a multiplier sequence A(r) €R".

j(to) = %xT(T)S(T)x(T) ; t}[x O(t)x +u" R(t)ux + )LT(A(t)x + B(t)u - )'c)]dt

We define the Hamiltonian

H(t) = x"O(t)x + u" R(t)ux + )LT(A(t)x + B(t)u)

Thus, the necessary conditions for a stationary point are:

. O0H .
X = a = (t)x + B(t)u State Equation
—) = %—H =Ox+A"(1)A Costate Equation
X
oH

8_ —Ru+B'A=0= u(t) = —R_lBT)\,(t) Stationary Condition
u
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Continuous Dynamic Optimization

We must solve the Two-point Boundary-value Problem

oH

k== (t)x = B(t)R™'B" (¢)A(z)
5= ok AT()A
0x
for t,<t < T, with boundary conditions

x(to)= Xo

We will solve this system for two special cases:

1- Fixed final state — Open loop control

2- Free final state — Closed loop control
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Continuous Dynamic Optimization

5.1 Fixed-Final State and Open-Loop Control
i = A(t)x + B(t)u, xT)=r,

J(,) —fu TR(t udt

If 0=0, the problem is intractable analytically. The Two-point Boundary-
value Problem is now simplified:

X = o _ Ax—-BR'B"A X = o _ Ax—-BR'B"A
A A
—
-)L=ﬁ=Qx+ATA A=
o0x 0x
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Continuous Dynamic Optimization

The costate equation is decoupled from the state equation, and it has
an easy solution:

A=—A"A=(t)=e" "A(T)

We replace A in the state equation and solve:

i=Ax-BR'B e TIAT)={x(r)= ey o~ [e e'"BR'B e TIA(T Wit

Iy

We solve now for A(T):

T
x(T) = ey, - f e*"IBR'BTe" " dTA(T) =+,

Iy 7
MT) = —Ggl(tO,T)(rT —eA(T_tO)xo) G, (to,T)=feA(T'T)BR‘lBTeAT(T‘I)dT

i
Weighted Controllability Gramian of [, 5]
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Continuous Dynamic Optimization

Summary:

T
Ge(t,,T) = [e""BR'B " " dy

)

The inverse of the gramian G(t,,7) exits if and only if the system is
controllable.

MT) = —Ggl(tO,T)(rT — eA(T_IO)xO)

t
x(t) = eA(t_t‘))xO - feA(T_r)BR_lBTeAT(T_T))»(T)dr

)

u*(t) = R'lBTeAT(T‘t)Ggl(tO,T)(rT — eA(T_IO)xO)

ME 433 - State Space Control 177



Continuous Dynamic Optimization

5.2 Free-Final-State and Closed-Loop Control
X =A(t)x + B(t)u,](to) = %xT(T)S(T)x(T) + —f(xTQ(t)x + uTR(t)u)dt

The Two-point Boundary-value Problem is:

i= 4 BRVBTA
IA
_A=9H Ox+ A"\
0x
T
We need [% —)LT(T)] i =0= 4 (1)=22 - (r)s(r)
0xX |, 0x |7

Let us assume that this relationship holds for all 7<t<7T (Sweep Method)

At) = S(2)x(t)
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Continuous Dynamic Optimization

We differentiate the costate and use the state equation,
A =S8x +Si = Sx + S(Ax - BR™'B" Sx)
We use now the costate equation,
—(Qx + ATSx) = Sx + S(Ax - BR‘IBTSX)
~Sx =(A"S+SA-SBR™'B"S + Q)x
Since this must hold for any trajectory x,
~S=A4"S+SA-SBR'B"S +0 Ricatti Equation (RE)
The optimal control is given by,
u(t) = -R™'B"Sx(t) = -K(¢)x(¢) Feedback Control!!

K(t) = R_IBTS(t) Kalman Gain
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Continuous Dynamic Optimization

This expresses u as a time-varying, linear, state-variable, feedback
control. The feedback gain K is computed ahead of time via S, which is
obtained by solving the Riccati equation backward in time with terminal
condition ;.

Similarly to the discrete-time case, it is possible to rewrite the cost
function as

1 T
J(to) = —xT(tO)S(tO)x(to) + E{HR'IBTSX + que dt

If we select the optimal control, the value of the cost function for zy<t < T
IS just
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Continuous Dynamic Optimization

Examples:
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Steady-State Feedback

6. Steady-State Feedback for discrete-time systems

The solution of the LQR optimal control problem for discrete-time
systems is a state feedback of the form

where

K, =(R+B'S,,B) B'S,,A
_1
S, =A"S, A-A"S, B(B'S,,,B+R) B'S, A+Q

The closed-loop system is time-varying!!!
X =(A-BK,)x,

1 What about a suboptimal constant
feedback gain?
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Steady-State Feedback

6.1 The Algebraic Riccati Equation (ARE)

T T T -1 7
S, =A"S, A-A"S, B(B'S,,B+R) B'S,,A+Q RDE
Let us assume that when & — -, the sequence S, converges to a

steady-state matrix S,.. If S, does converge, then S, =S,., =S. Thus, in
the limit

S = AT[S - SB(BTSB + R)_lBTS]A + 0 ARE

The limiting solution S, is clearly a solution of the ARE. Under some
circumstances we may be able to use the following time-invariant
feedback control instead of the optimal control,

u, =-K, x,
K. =(R+B"S,B) B'S,A
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Steady-State Feedback

1- When does there exist a bounded limiting solution S, to the Ricatti
equation for all choices of S,?

2- In general, the limiting solution S, depends on the boundary
condition S,. When is S, the same for all choices of S,?

3- When is the closed-loop system (u,=-K_x, ) asymptotically stable?

Theorem: Let (4, B) be stabilizable. Then, for every choice of S, there
IS a bounded solution §, to the RDE. Furthermore, S, is a positive
semidefinite solution to the ARE.

Theorem: Let C be a square root of the intermediate-state weighting
matrix, so that O=C’C=0, and suppose R>0. Suppose (4, C) is
observable. Then, (4, B) is stabilizable if and only if:

a- There is a unique positive definite limiting solution S, to the RDE.
Furthermore, S, is the unique positive definite solution to the ARE.

b- The closed-loop plant
X, =(A-BK_)x,

-1
is asymptotically stable, where K is given by K., = (R + BTSOOB) B'S, A
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Steady-State Feedback

7. Steady-State Feedback for continuous-time systems

The solution of the LQR optimal control problem for continuous-time
systems is a state feedback of the form

u(t) = —K(1)x(¢)

where
K(t)=R'B"S(1)
~S=A"S+SA-SBR'B'S+0

The closed-loop system is time-varying!!!
i(7) = (A - BK(r))x(1)

1 What about a suboptimal constant
feedback gain?

u(t) = -K(t)x(t) = -K x(¢)
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Steady-State Feedback

7.1 The Algebraic Riccati Equation (ARE)

—S=A"S+SA-SBR'B'S+0 RDE

Let us assume that when ¢ —-o, the sequence S(¢) converges to a
steady-state matrix S_.. If S(f) does converge, then dS/dt =0. Thus, in the
limit

0=A"S+SA-SBR'B'S+0Q ARE

The limiting solution S, is clearly a solution of the ARE. Under some
circumstances we may be able to use the following time-invariant
feedback control instead of the optimal control,

u=-K_x
K_=R'B'S_
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Steady-State Feedback

1- When does there exist a bounded limiting solution S, to the Ricatti
equation for all choices of S(7)7?

2- In general, the limiting solution S, depends on the boundary
condition S(7). When is S,, the same for all choices of S(7)?

3- When is the closed-loop system (u=-K_x) asymptotically stable?

Theorem: Let (4, B) be stabilizable. Then, for every choice of S(7) there
IS a bounded solution §, to the RDE. Furthermore, S, is a positive
semidefinite solution to the ARE.

Theorem: Let C be a square root of the intermediate-state weighting
matrix O, so that O=C’C=0, and suppose R>0. Suppose (4, C) is
observable. Then, (4, B) is stabilizable if and only if:

a- There is a unique positive definite limiting solution S, to the RDE.
Furthermore, S, is the unique positive definite solution to the ARE.

b- The closed-loop plant
i=(A-BK,)x

is asymptotically stable, where K__ is given by K,, =R™'B'S,,
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Steady-State Feedback

Examples:
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Receding Horizon LQ Control
8. Receding Horizon LQ Control

So far we have seen two kinds of LQ control problems:

Finite Horizon: Finite duration, time-varying solution (even for time

invariant systems), solution via RDE, no stability properties necessary.

| 1 1 N-1
Discrete time: ) Xy SyXy + > 2 (x,kaxk + u,kauk)
k=0

1
Sy = AIZSkHAk - AI{SkHBk(BlekHBk T Rk) BgSk+1Ak +0,
1
U, = _(Rk t Bszan) B, S, nAX,
1
Continuous time: J(to) = ExT(T)S(T)x(T) + —f(xTQ(t)x + uTR(t)u)dt

~S=A"S+SA-SBR'B"S+0Q

u(r) = —R()" B(r) S(1)x(¢)

ME 433 - State Space Control 189



Receding Horizon LQ Control

Infinite Horizon: Infinite duration, time invariant solution (for LTI
systems + QTI cost), solution via ARE, stability via detectability.

1 o
Discrete time: = —E(x,fok + u,{Ruk)
25

S, = AT[SOO -S.B(B"S,B+ R)_lBTSOO]A +0

u, = —(R+B'S,B) B'S,Ax,
Continuous time: J = %{(XTQ(Z‘)X + uTR(t)u)dt
0=A"S_+S_A-S_BR'B'S_+0
u(t) = —R'IBTSOOx(t)
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Receding Horizon LQ Control

Receding Horizon: At each time i (discrete) or ¢ (continuous) we solve
a finite horizon problem

Discrete time:

1 ]l «
T T T
J = _xi+NSin+N T xi+kaxi+k + ui+kRkui+k
2 2 P

-1
S, = ASi A - AIZSkHBk(BIZSkHBk + Rk) B{S;,A+Q, Os<ks=N-I

u, = (R, +B'S,B) B'S,Ax,

l

Continuous time:
T

J(t)=%xT(t+T x(t+T)+ f( r+7) O(t)x(t +7) +u(t +7) R(r)u(t+r))dt

0

—S=A"S+SA-SBR'B'S+0 O<t<T

u(t) = —R(1)" B(2)" S(0)x(¢)
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Receding Horizon LQ Control

Past

Future Predictions

...............

-
-

-
________

~~~~~

Closed-loop input

Predicted state

Open-loop input
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Receding Horizon LQ Control

Receding Horizon: At each time i (discrete) or ¢ (continuous) we solve
a finite horizon problem

* An infinite-horizon strategy — we need to understand its stabilization
properties

» Time-invariant for LTI problems

« Capable of working in the nonlinear, constrained context, using explicit
optimization
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Receding Horizon LQ Control

We define now the Fake Algebraic Riccati Equation (FARE)

Discrete time:
u, = —(Rl. + BiTSOBl.)_lBiTSOAixl.
T T T Lo
Si = A Sind — A Sk+lBk(Bk SeaBi + Rk) B SiaAc+Q 0sk=N-1
-

-1 -
S = AkTSk+1Ak - AZSkHBk(BZSkHBk T Rk) BIfSkHAk + 0,
Qk = 0O + 5,1 — 5

We can study the stability properties of the Receding Horizon control as
an Infinite Horizon control with a new QO (detectability + monotonicity).
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