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ME 433 – STATE SPACE CONTROL 

Lecture 9 
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Discrete Dynamic Optimization 
1. Multiple-step Discrete-time Finite-Horizon Optimal Control 

The plant is described by the general nonlinear discrete-time dynamical 
equation 

  

€ 

xk+1 = f k,xk,uk( ),           k = 0,…,N −1

with initial condition x0 given. The vector xk has n components and the 
vector uk has m components. Note that this equation contains a set of 
successive equality constraints which define the state xk, in terms of the 
controls uk, and the known initial condition x0.  

The problem is to find the sequence uk that minimizes the performance 
index:    

€ 

J = φ N,xN( ) + L k,xk,uk( )
k=0

N −1

∑
Since none of the uk depends on any of the xk other than x0, this is 
open-loop control.   
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Discrete Dynamic Optimization 
We adjoin the system equations (constraints) to the performance index 
J with a multiplier sequence λ(k) ∈ Rn. 

For convenience, we define a Hamiltonian at each step k 

€ 

J = φ N,xN( ) + L k,xk,uk( ) + λk +1
T f k,xk,uk( ) − xk +1[ ]{ }

k =0

N −1

∑

€ 

Hk = L k,xk,uk( ) + λk+1
T f k,xk,uk( )

Thus, 

€ 

J = φ N,xN( ) + Hk − λk +1
T xk +1{ }

k =0

N −1

∑

= φ N,xN( ) − λN
T xN + Hk − λk

T xk{ } + H0
k =1

N −1

∑
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Discrete Dynamic Optimization 
We want to examine now the increment in     due to increments in all 
the variables xk, λk, and uk. The final time N is fixed and the initial 
condition x0 is given. 

€ 

xk=0 = x0 Difference equation solved forward in time 

€ 

dJ = ∂φ
∂xN

− λN
T

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ dxN +

∂Hk

∂xk

− λk
T

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ dxk +

∂Hk

∂uk

duk

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ k =1

N −1

∑

+
∂H0

∂x0
dx0 +

∂H0

∂u0
du0 +

∂Hk−1

∂λk

− xk

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

T

dλk
k =1

N

∑
We make 

  

€ 

∂Hk−1

∂λk
− xk = 0⇒ xk+1 =

∂Hk

∂λk+1
= f k,xk,uk( ),          k = 0,…,N −1

with initial boundary condition  

(1) 



ME 433 - State Space Control 141 

Discrete Dynamic Optimization 
When the constraint is satisfied, we have 

Difference equation solved backward in time 

€ 

dJ = ∂φ
∂xN

− λN
T

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ dxN +

∂Hk

∂xk

− λk
T

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ dxk +

∂Hk

∂uk

duk

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ k =1

N −1

∑

+
∂H0

∂x0
dx0 +

∂H0

∂u0
du0

We choose the multiplier sequence λ(k) ∈ Rn so that we have 

  

€ 

∂Hk

∂xk
− λk

T = 0⇒ λk
T =

∂Lk
∂xk

+ λk+1
T ∂fk

∂xk
,          k = 0,…,N −1 (2) 
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Discrete Dynamic Optimization 
With this choice of λk we have 

€ 

dJ = ∂φ
∂xN

− λN
T

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ dxN +

∂Hk

∂uk

duk
k =0

N −1

∑ +
∂H0

∂x0
dx0

- The initial condition x0 is given, then dx0=0. 

- For a fixed final state, xN is given, then dxN=0. For a free final state, we 
need 

€ 

λk=N
T =

∂φ
∂xN

 

The initial condition for the Two-point Boundary-value Problem (1)-(2) is 
the known value for x0. The final condition is either a desired value of xN 
or the value of λN in (3).  

(3) 
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Discrete Dynamic Optimization 
Now we have 

For an extremum, the increment in      must be zero for any arbitrary 
duk. This can only happen if we have 

€ 

dJ = ∂Hk

∂uk

duk
k =0

N −1

∑

  

€ 

∂Hk

∂uk
=
∂Lk
∂uk

+ λk+1
T ∂fk

∂uk
= 0,          k = 0,…,N −1
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Discrete Dynamic Optimization 
SUMMARY System Properties Controller Properties 

€ 

xk+1 = f k,xk,uk( )

€ 

J = φ N,xN( ) + L k,xk,uk( )
k=0

N −1

∑

€ 

Hk = L k,xk,uk( ) + λk+1
T f k,xk,uk( )

System Model 

Performance Index 

Hamiltonian 

State Equation 

€ 

xk+1 =
∂Hk

∂λk+1
= f k,xk,uk( )

Costate Equation 

€ 

λk
T =

∂Hk

∂xk
=
∂Lk
∂xk

+ λk+1
T ∂fk

∂xk
Stationary Condition 

€ 

∂Hk

∂uk
=
∂Lk
∂uk

+ λk+1
T ∂fk

∂uk
= 0

Boundary Condition 

€ 

∂φ
∂xN

− λN
T

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ dxN = 0,   ∂H0

∂x0
dx0 = 0



ME 433 - State Space Control 145 

Discrete Dynamic Optimization 
So far, we have derived necessary conditions for a stationary point of J 
that also satisfies the constrains xk+1=f(k,xk,uk). We are interested now in 
sufficient conditions for a local minimum. This requires satisfaction of 
the stationary conditions above, plus establishment of the property that 
dJ ≥0 for small changes duk about the stationary point.   

€ 

dJ =
1
2
dxN

T ∂
2φ
∂xN

2 dxN +
1
2

dxk
T duk

T[ ]
∂2Hk

∂xk
2

∂2Hk

∂xk∂uk
∂2Hk

∂uk∂xk
∂2Hk

∂uk
2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

dxk
duu

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

k=0

N −1

∑

The values of dxk are determined by the sequence duk from the 
differential of the plant dynamics  

€ 

dxk+1 =
∂f
∂xk

dxk +
∂f
∂uk

duk,         dx0 = 0
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Discrete Dynamic Optimization 

€ 

xk+1 = axk + buk,          xk=0 = x0

Examples:    

(a) Fixed final state  

(b) Free final state    
€ 

xk=N = rN

€ 

xk=N →rN
€ 

J0 =
r
2

uk
2

k=0

N −1

∑

€ 

J0 =
1
2
xN − rN( )2 +

r
2

uk
2

k=0

N −1

∑
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Discrete Dynamic Optimization 
2. Linear Quadratic Regulator (LQR) Problem 

The plant is described by the linear discrete-time dynamical equation 

€ 

xk+1 = Akxk + Bkuk,

with initial condition x0 given. We want to find the sequence uk that 
minimizes the performance index:  

€ 

J =
1
2
xN
T SN xN +

1
2

xk
TQkxk + uk

TRkuk( )
k=0

N −1

∑

Linear because of the system dynamics 
Quadratic because of the performance index 
Regulator because of the absence of a tracking objective---we are 
interested in regulation around the zero state.  
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Discrete Dynamic Optimization 
We adjoin the system equations (constraints) to the performance index 
J with a multiplier sequence λ(k) ∈ Rn. 

We define a Hamiltonian at each step k 

€ 

Hk = xk
TQkxk + uk

TRkuk + λk+1
T Akxk + Bkuk[ ]

Thus, the necessary conditions for a stationary point are: 
€ 

J = 1
2

xN
T SN xN +

1
2

xk
TQk xk + uk

T Rkuk( )
k =0

N −1

∑ + λk +1
T Ak xk + Bkuk − xk +1( )

€ 

xk+1 =
∂Hk

∂λk+1
= Akxk + Bkuk

€ 

λk
T =

∂Hk

∂xk
= xk

TQk + λk+1
T Ak

€ 

∂Hk

∂uk
= uk

TRk + λk+1
T Bk = 0⇒    uk

T = −λk+1
T BkRk

−1
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Discrete Dynamic Optimization 
We must solve the Two-point Boundary-value Problem 

€ 

xk+1 = Akxk − BkRk
−1Bk

Tλk+1

€ 

λk = Ak
Tλk+1 +Qkxk

€ 

xk=0 = x0

λk=N = SN xk=N   or  xk=N = xN

for k=0, … , N-1 with boundary conditions 

If |A|  ≠0 we can invert A in the xk recursion to yield a reverse-time 
variant.  

€ 

xk+1 = Akxk − BkRk
−1Bk

Tλk+1⇒ xk = Ak
−1xk+1 + Ak

−1BkRk
−1Bk

Tλk+1

€ 

λk = Ak
Tλk+1 +Qkxk

Unfortunately, we are given x0, not xN and λN simultaneously.  

€ 

⇒    ∂φ
∂xN

− λN
T

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ dxN = 0,   ∂H0

∂x0
dx0 = 0



ME 433 - State Space Control 150 

Discrete Dynamic Optimization 

2.1 Fixed-Final State and Open-Loop Control 

€ 

xN = rN

J0 =
1
2

uk
TRuk

k=0

N −1

∑

If Q≠0, the problem is intractable. The Two-point Boundary-value 
Problem is now simplified: 

€ 

xk+1 = Axk − BR
−1BTλk+1

λk = ATλk+1 +Qxk

€ 

⇒

€ 

xk+1 = Axk + Buk,

€ 

xk+1 = Axk − BR
−1BTλk+1

λk = ATλk+1
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Discrete Dynamic Optimization 
The costate equation is decoupled from the state equation, and it has 
an easy solution: 

€ 

xk+1 = Axk − BR
−1BT AT( )N −k−1λN ⇒ xk = Akx0 − Ak− i−1

i=0

k−1

∑ BR−1BT AT( )N − i−1λN
€ 

λk = ATλk+1⇒ λk = AT( )N −kλN
We replace λk+1 in the state equation and solve: 

€ 

xN = AN x0 − AN − i−1

i=0

N −1

∑ BR−1BT AT( )N − i−1λN = rN

We solve now for λN: 

€ 

λN = −WC
−1 0,N( ) rN − A

N x0( )

€ 

WC 0,N( ) = AN − i−1

i=0

N −1

∑ BR−1BT AT( )N − i−1

Weighted Controllability Gramian of [A,B]  
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Discrete Dynamic Optimization 
Summary: 

€ 

λk = − AT( )N −kWC
−1 0,N( ) rN − A

N x0( )

€ 

λN = −WC
−1 0,N( ) rN − A

N x0( )

  

€ 

WC 0,N( ) = AN − i−1

i=0

N −1

∑ BR−1BT AT( )N − i−1 =UN

R−1


R−1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
UN

T

€ 

xk = Akx0 + Ak− i−1

i=0

k−1

∑ BR−1BT AT( )N − i−1WC
−1 0,N( ) rN − A

N x0( )

€ 

uk
* = BR−1BT AT( )N −k−1WC

−1 0,N( ) rN − A
N x0( )

The inverse of the gramian WC(0,N) exits if and only if UN=[B AB A2B … 
AN-1B] is full rank (system is controllable). 
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Discrete Dynamic Optimization 

2.2 Free-Final-State and Closed-Loop Control 

€ 

J0 =
1
2
xN
T SN xN +

1
2

xk
TQkxk + uk

TRkuk( )
k=0

N −1

∑

€ 

xk+1 = Akxk + Bkuk,

€ 

∂φ
∂xN

− λN
T

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ dxN = 0⇒ λN

T =
∂φ
∂xN

= xN
T SNWe need 

Let us assume that this relationship holds for all k ≤N (Sweep Method) 

€ 

λk = Skxk

€ 

xk+1 = Akxk − BkRk
−1Bk

Tλk+1

λk = Ak
Tλk+1 +Qkxk

The Two-point Boundary-value Problem is: 
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Discrete Dynamic Optimization 
Substituting in the state equation, 

Using the matrix inversion lemma 

€ 

A + BCD( )−1 = A−1 − A−1B DA−1B +C−1( )−1DA−1

€ 

xk+1 = Akxk − BkRk
−1Bk

T Sk+1xk+1

€ 

⇒    xk+1 = I + BkRk
−1Bk

T Sk+1( )−1
Akxk

Substituting in the costate equation, 

€ 

Skxk = Ak
T Sk+1xk+1 +Qkxk =Qkxk + Ak

T Sk+1 I + BkRk
−1Bk

T Sk+1( )−1Akxk

Since this must hold for any sequence xk, 

€ 

Sk =Qk + Ak
T Sk+1 I + BkRk

−1Bk
T Sk+1( )−1Ak

€ 

Sk = Ak
T Sk+1Ak − Ak

T Sk+1Bk Bk
T Sk+1Bk + Rk( )−1Bk

T Sk+1Ak +Qk

Ricatti Difference Equation (RDE) 
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Discrete Dynamic Optimization 
The optimal control is given by, 

Solving for uk, 

Feedback Control!!! 

€ 

uk = −Rk
−1Bk

Tλk+1 = −Rk
−1Bk

T Sk+1xk+1 = −Rk
−1Bk

T Sk+1 Akxk + Bkuk( )

€ 

uk = − I + Rk
−1Bk

T Sk+1Bk( )−1Rk
−1Bk

T Sk+1Akxk

= − Rk + Bk
T Sk+1Bk( )−1Bk

T Sk+1Akxk
= −Kkxk

€ 

Kk = Rk + Bk
T Sk+1Bk( )−1Bk

T Sk+1Ak Kalman Gain Sequence 

This expresses uk as a time-varying, linear, state-variable, feedback 
control. The feedback gain Kk is computed ahead of time via the 
sequence Sk, which satisfies the RDE with terminal condition SN.  
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Discrete Dynamic Optimization 
The optimal control is given by, 

Solving for uk, 

Feedback Control!!! 

€ 

uk = −Rk
−1Bk

Tλk+1 = −Rk
−1Bk

T Sk+1xk+1 = −Rk
−1Bk

T Sk+1 Akxk + Bkuk( )

€ 

uk = − I + Rk
−1Bk

T Sk+1Bk( )−1Rk
−1Bk

T Sk+1Akxk

= − Rk + Bk
T Sk+1Bk( )−1Bk

T Sk+1Akxk
= −Kkxk

€ 

Kk = Rk + Bk
T Sk+1Bk( )−1Bk

T Sk+1Ak Kalman Gain Sequence 

This expresses uk as a time-varying, linear, state-variable, feedback 
control. The feedback gain Kk is computed ahead of time via the 
sequence Sk, which satisfies the RDE with terminal condition SN.  
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Discrete Dynamic Optimization 

Where we have used the fact that  

€ 

J0 =
1
2
xN
T SN xN +

1
2

xk
TQkxk + uk

TRkuk( )
k=0

N −1

∑

=
1
2
x0
T S0x0 +

1
2

xk+1
T Sk+1xk+1 + xk

T Qk − Sk( )xk + uk
TRkuk( )

k=0

N −1

∑

€ 

xk+1
T Sk+1xk+1 − xk

T Skxk = xN
T SN xN

k=0

N −1

∑ − x0
T S0x0

€ 

J0 =
1
2
x0
T S0x0 +

1
2

xk
T Ak

T Sk+1Ak +Qk − Sk( )xk + xk
T Ak

T Sk+1Bkuk[
k=0

N −1

∑

+uk
TBk

T Sk+1Akxk + uk
T Bk

T Sk+1Bk + Rk( )uk ]

Using the state equation  

€ 

xk+1 = Akxk + Bkuk
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Discrete Dynamic Optimization 

€ 

J0 =
1
2
x0
T S0x0 +

1
2

xk
T Ak

T Sk+1Bk Bk
T Sk+1Bk + Rk( )−1Bk

T Sk+1Akxk[
k=0

N −1

∑

+xk
T Ak

T Sk+1Bkuk + uk
TBk

T Sk+1Akxk + uk
T Bk

T Sk+1Bk + Rk( )uk ]

=
1
2
x0
T S0x0 +

1
2

Rk + Bk
T Sk+1Bk( )−1Bk

T Sk+1Akxk + uk
k=0

N −1

∑
Rk +Bk

T Sk+1Bk

2

=
1
2
x0
T S0x0

Using the Riccati equation  

€ 

Sk = Ak
T Sk+1Ak − Ak

T Sk+1Bk Bk
T Sk+1Bk + Rk( )−1Bk

T Sk+1Ak +Qk

we can obtain 

€ 

uk = − Rk + Bk
T Sk+1Bk( )−1Bk

T Sk+1Akxk


