ME 433 — STATE SPACE CONTROL

Lecture 8
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Static Optimization

1. Optimization without constraints

Problem definition: Find the values of m parameters u,, u,,...,u, that
minimize a performance function or index

1 0°L

L(ul,uz,...,um) = dL = %du+—duT—2du+O(3)

We define the decision vector u = [ul U,

ou 2 ou

T
u, |

and write the performance index as L(u)

Necessary conditions for a minimum:

oL oL )

— =0 |—=0,i=1,....m

ou ou, )

0°L 0 0°L 0°L \

e 2 N —

ou’ ou”|  ouou.
i,] L ]/
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Static Optimization

Sufficient conditions for a minimum:

oL oL
— = (—=O,i=1,...,m)
ou ou,
°L O°L 9°L » - .
— >0 —| = Positive definite Hessian
ou ou y ou,0u ;
Note:

Positive semidefinite: Q=0 if x' Qx=0 Vx=0
Q=0 ifall 4,20, Q=0 ifall |m|=0

Positive definite: 0>0 if x'Ox>0 Vx=0
Q>0 ifall A, >0, Q>0 ifall |m|>0
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Static Optimization

Examples:

L=[u “2][_11 ﬂm

o

L= (“1 - ug)(ul - 3u§)
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Static Optimization

2. Optimization with constraints

Problem definition: Find the values of m parameters u,, u,,...,u, that
minimize a performance function or index

L(ul,uz,. N 7S e S ..,xn)
Subject to the constraint equation
f(x,u) =0

The n state parameters x,, x,,....x, are determined by the decision

parameters u,, u,,...,u, through the constraint equation (» equations).
We define:

- 7
Decision vector u=|u u, ... u,
- T
State vector X=X X, ... X,
] 17T
Constraint vector  f = [ fHofHho o,
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Static Optimization

If

L(ul,uz,. col XXy, ..,xn)

and

f(xu) =0

are linear in both x and u, then, in general, a minimum does NOT exist.
Inequalities constraints on the magnitudes of x and u are necessary to
make the problem meaningful. If the inequality constraints are also
linear, we are in front of a linear programming problem.

We will focus at the beginning on nonlinear L and f. This of course is
not a guarantee of the existence of a minimum.
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Static Optimization

2.1 Optimization with constraints — Approach A

At a stationary point, dL is equal to zero to first order for all increments
du when df'is zero, letting x change as a function of . Thus we require

dL=Ldx+Ldu=0
df = fdx+ fdu=0

where

Hence, if dL is zero for arbitrary du, it is necessary that

L - fox_lfu =0 (m equations)
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Static Optimization

2.2 Optimization with constraints — Approach B

At a stationary point, dL is equal to zero to first order for all increments
du when df'is zero, letting x change as a function of . Thus we require

dL=Ldx+Ldu=0 [Lx L, ] [dx]
= =0

df = f.dx+ f.du=0 f. f,||du

This set of equations defines a stationary point. For a non-trivial
solution we need that the (n+1) x (nt+m) matrix has rank less than n+1.
This means that its rows must be linearly dependent. So, there exists
an n vector A (Lagrange multiplier) such that

i [Lx Lu]=0 N LX+A:fx=O N )LT=—i,(f;1
f. . Lo+ X f=0  |L-Lff,=0]
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Static Optimization

2.3 Optimization with constraints — Approach C

We adjoin the constraints to the performance index to define the
Hamiltonian function

H(x,u,A) = L(x,u) + A" f(x,u)
where A €R"is a to-be-determined Lagrange multiplier. To choose x, u
and A to yield a stationary point we proceed as follows.

= g g O

0x u
& =f=0 (n equations)
oA
oH oL d
— = )LT —f — — )\,T = —fox_l (n equations)
ox  0x 0x
ﬁ — % nyy % — — L - fox‘lfu =0 (m equations)

Ju Jdu ou
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Static Optimization

2.4 Optimization with constraints — Sufficient conditions

So far, we have derived necessary conditions for a minimum point of L

(x,u) that also satisfies the constratins f{x,u)=0. We are interested now
in sufficient conditions.

dx| 1 L L _||dx
dL=|L L —ax" du' || T O(3 1
[ g ”][du]+2[ * N ] L. L, du]+ (3) )
dx| 1 . f. |ldx
df = —ldx" du' ||”" . O3 2
where
0°L 9’ 9°L 0> f o> f o f
Lxx=a Z’Luu= 2 xu= ’fxx= 2’fuu= 2’fxu=
X 0 oxou 0x u oxou
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Static Optimization

[1 )LT][dL]=[Hx Hu][dx]"‘l[de duT][Hxx quHdX
df dul 2 H H_||du

For a stationary point we need /=0, and also that dL=0 to first order for
all increments dx, du. Since =0, we also have df=0. And these
conditions require H=0 and H =0 (necessary conditions). By (2) we

have

] +0(3) (3)

dx =~ f.du

Replacing this in (3) yields

dL = _duTI:_fqux—T I:||:Hxx qu][_fi fu:|dl/t+0(3)
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Static Optimization

To ensure that this stationary point is a minimum we need dL>0 to the

second order for all increments du:

—_— H, H,|-f1,
e e [

HMM - Huxfx_lfu - fMTfX_THXM + fMTfX_THXXfX_IfM > O

9°L
W = HMM - Huxfx_lfu - fqux_Tqu + fqux_THxfo_lfu
£=0
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Static Optimization

Examples:
1 1 1|[x X
(a) L(x,u)=5[x u][l 2”u]+[0 1][u}
f(xu)=x-3=0
(b) L(x,u)=l(xz+u2)
2\a* b’

1 1
(c) L(x,u) = ExTQx + > u' Ru

f(x,u)=x+Bu+c=0
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Static Optimization

2.5 Optimization with constraints — Lagrange multiplier

We now produce an interpretation of the Lagrange multiplier. Let us
suppose that the constraints are increased by infinitesimal amounts so
that we have f(x,u)=df, where df is an infinitesimal constant vector. How
does the optimal value change?

dH =H _dx+H_du+ f!dA=0
dH' =H dx+H du+ f d\=0
df = f.dx+ f du

The partial derivatives are evaluated at the original optimal value.
These equations determine dx, du, dA.

dx = fx_ldf - fx_lfudu
dr=~f"(H dx+H, du)

du = —("’QTL) [H w fqux'THxx]f;ldf = -Cdf
0°u
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Static Optimization

Existence of a neighboring optimal solution (for infinitesimal change in )
IS guaranteed by (82L

L = 2) > ()
auf=0

which is the sufficient condition for a local minimum (Equation (4)).
Substituting the expression for dx and du in (3), and using H =H =0, we
get

1
dL ==X'df +df"| £ H  f" - C"L,Cdf

aLmin — —)\.T
df
9L
afnZnn = fx_THxxfx_l — CTLuuC
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Static Optimization

2.6 Optimization with constraints — Numerical solution

1. Select initial u«

2. Determine x from f{x,u)=0

3. Determine A from A’ = —fox_1

4. Determine the gradient vector H =L + )»Tfu

5. Update the control/decision vector by Au =—-kH & for k>0 (scalar)
(Steepest Descendent Method)

6. Determine the predicted change AL = H, Au = —kH H . Stop if small
enough. Go to step 2 otherwise.
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