ME 433 – STATE SPACE CONTROL

Lecture 8

1. Optimization without constraints

Problem definition: Find the values of m parameters $u_1, u_2, ..., u_m$ that minimize a performance function or index

$$L(u_1, u_2, \dots, u_m) \Rightarrow dL = \frac{\partial L}{\partial u} du + \frac{1}{2} du^T \frac{\partial^2 L}{\partial u^2} du + O(3)$$

We define the decision vector $u = \begin{bmatrix} u_1 & u_2 & \dots & u_m \end{bmatrix}^T$ and write the performance index as L(u)

Necessary conditions for a minimum:

$$\frac{\partial L}{\partial u} = 0 \qquad \left(\frac{\partial L}{\partial u_i} = 0, i = 1, \dots, m\right)$$

$$\frac{\partial^2 L}{\partial u^2} \ge 0 \qquad \left(\left[\frac{\partial^2 L}{\partial u^2}\right]_{i, i} = \frac{\partial^2 L}{\partial u_i \partial u_i}\right) \quad \text{Positive semidefinite Hessian}$$

Sufficient conditions for a minimum:

$$\frac{\partial L}{\partial u} = 0 \qquad \left(\frac{\partial L}{\partial u_i} = 0, i = 1, \dots, m\right)$$

$$\frac{\partial^2 L}{\partial u^2} > 0 \qquad \left(\left[\frac{\partial^2 L}{\partial u^2}\right]_{i,j} = \frac{\partial^2 L}{\partial u_i \partial u_j}\right) \quad \textit{Positive definite Hessian}$$

Note:

Positive semidefinite:
$$Q \ge 0$$
 if $x^T Q x \ge 0$ $\forall x \ne 0$

$$Q \ge 0$$
 if all $\lambda_i \ge 0$, $Q \ge 0$ if all $|m_i| \ge 0$

Positive definite:
$$Q > 0$$
 if $x^T Qx > 0$ $\forall x \neq 0$

$$Q > 0$$
 if all $\lambda_i > 0$, $Q > 0$ if all $|m_i| > 0$

$$\lambda_i$$
: eigenvalues m_i : principal minors

Examples:

$$L = \begin{bmatrix} u_1 & u_2 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

$$L = \begin{bmatrix} u_1 & u_2 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

$$L = (u_1 - u_2^2)(u_1 - 3u_2^2)$$

2. Optimization with constraints

Problem definition: Find the values of m parameters $u_1, u_2, ..., u_m$ that minimize a performance function or index

$$L(u_1,u_2,\ldots,u_m,x_1,x_2,\ldots,x_n)$$

Subject to the constraint equation

$$f(x,u) = 0$$

The n state parameters $x_1, x_2,...,x_n$ are determined by the decision parameters $u_1, u_2,...,u_m$ through the constraint equation (n equations). We define:

Decision vector
$$u = \begin{bmatrix} u_1 & u_2 & \dots & u_m \end{bmatrix}^T$$

State vector $x = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}^T$
Constraint vector $f = \begin{bmatrix} f_1 & f_2 & \dots & f_n \end{bmatrix}^T$

lf

$$L(u_1,u_2,\ldots,u_m,x_1,x_2,\ldots,x_n)$$

and

$$f(x,u) = 0$$

are linear in both x and u, then, in general, a minimum does NOT exist. Inequalities constraints on the magnitudes of x and u are necessary to make the problem meaningful. If the inequality constraints are also linear, we are in front of a <u>linear programming problem</u>.

We will focus at the beginning on nonlinear L and f. This of course is not a guarantee of the existence of a minimum.

2.1 Optimization with constraints – Approach A

At a stationary point, dL is equal to zero to first order for all increments du when df is zero, letting x change as a function of u. Thus we require

$$dL = L_x dx + L_u du = 0$$

$$df = f_x dx + f_u du = 0$$

where

$$L_{x} = \frac{\partial L}{\partial x}, L_{u} = \frac{\partial L}{\partial u}, f_{x} = \frac{\partial f}{\partial x}, f_{u} = \frac{\partial f}{\partial u}$$

Hence, if dL is zero for arbitrary du, it is <u>necessary</u> that

$$L_u - L_x f_x^{-1} f_u = 0 \qquad (m \text{ equations})$$

2.2 Optimization with constraints – Approach B

At a stationary point, dL is equal to zero to first order for all increments du when df is zero, letting x change as a function of u. Thus we require

$$dL = L_x dx + L_u du = 0$$

$$df = f_x dx + f_u du = 0$$

$$\Leftrightarrow \begin{bmatrix} L_x & L_u \\ f_x & f_u \end{bmatrix} \begin{bmatrix} dx \\ du \end{bmatrix} = 0$$

This set of equations defines a stationary point. For a non-trivial solution we need that the $(n+1) \times (n+m)$ matrix has rank less than n+1. This means that its rows must be linearly dependent. So, there exists an n vector λ (Lagrange multiplier) such that

$$\begin{bmatrix} 1 & \lambda^T \end{bmatrix} \begin{bmatrix} L_x & L_u \\ f_x & f_u \end{bmatrix} = 0 \implies \begin{bmatrix} L_x + \lambda^T f_x = 0 \\ L_u + \lambda^T f_u = 0 \end{bmatrix} \implies \begin{bmatrix} \lambda^T = -L_x f_x^{-1} \\ L_u - L_x f_x^{-1} f_u = 0 \end{bmatrix}$$

2.3 Optimization with constraints – Approach C

We adjoin the constraints to the performance index to define the Hamiltonian function

$$H(x,u,\lambda) = L(x,u) + \lambda^{T} f(x,u)$$

where $\lambda \in \mathbb{R}^n$ is a to-be-determined Lagrange multiplier. To choose x, u and λ to yield a stationary point we proceed as follows.

$$dH = \frac{\partial H}{\partial x}dx + \frac{\partial H}{\partial u}du + \frac{\partial H}{\partial \lambda}d\lambda$$

$$\frac{\partial H}{\partial \lambda} = f = 0 \tag{n equations}$$

$$\frac{\partial H}{\partial x} = \frac{\partial L}{\partial x} + \lambda^T \frac{\partial f}{\partial x} = 0 \qquad \Rightarrow \qquad \lambda^T = -L_x f_x^{-1} \qquad (n \text{ equations})$$

$$\frac{\partial H}{\partial u} = \frac{\partial L}{\partial u} + \lambda^T \frac{\partial f}{\partial u} = 0 \qquad \Rightarrow \qquad L_u - L_x f_x^{-1} f_u = 0 \qquad (m \text{ equations})$$

2.4 Optimization with constraints – Sufficient conditions

So far, we have derived *necessary conditions* for a minimum point of L(x,u) that also satisfies the constratins f(x,u)=0. We are interested now in *sufficient conditions*.

$$dL = \begin{bmatrix} L_x & L_u \end{bmatrix} \begin{bmatrix} dx \\ du \end{bmatrix} + \frac{1}{2} \begin{bmatrix} dx^T & du^T \end{bmatrix} \begin{bmatrix} L_{xx} & L_{xu} \\ L_{ux} & L_{uu} \end{bmatrix} \begin{bmatrix} dx \\ du \end{bmatrix} + O(3) \tag{1}$$

$$df = \begin{bmatrix} f_x & f_u \end{bmatrix} \begin{bmatrix} dx \\ du \end{bmatrix} + \frac{1}{2} \begin{bmatrix} dx^T & du^T \end{bmatrix} \begin{bmatrix} f_{xx} & f_{xu} \\ f_{ux} & f_{uu} \end{bmatrix} \begin{bmatrix} dx \\ du \end{bmatrix} + O(3)$$
 (2)

where

$$L_{xx} = \frac{\partial^2 L}{\partial x^2}, L_{uu} = \frac{\partial^2 L}{\partial u^2}, L_{xu} = \frac{\partial^2 L}{\partial x \partial u}, f_{xx} = \frac{\partial^2 f}{\partial x^2}, f_{uu} = \frac{\partial^2 f}{\partial u^2}, f_{xu} = \frac{\partial^2 f}{\partial x \partial u}$$

$$\begin{bmatrix} 1 & \lambda^T \end{bmatrix} \begin{bmatrix} dL \\ df \end{bmatrix} = \begin{bmatrix} H_x & H_u \end{bmatrix} \begin{bmatrix} dx \\ du \end{bmatrix} + \frac{1}{2} \begin{bmatrix} dx^T & du^T \end{bmatrix} \begin{bmatrix} H_{xx} & H_{xu} \\ H_{ux} & H_{uu} \end{bmatrix} \begin{bmatrix} dx \\ du \end{bmatrix} + O(3)$$
 (3)

For a stationary point we need f=0, and also that dL=0 to first order for all increments dx, du. Since f=0, we also have df=0. And these conditions require $H_x=0$ and $H_u=0$ (necessary conditions). By (2) we have

$$dx = -f_x^{-1} f_u du$$

Replacing this in (3) yields

$$dL = \frac{1}{2} du^{T} \begin{bmatrix} -f_{u}^{T} f_{x}^{-T} & I \end{bmatrix} \begin{bmatrix} H_{xx} & H_{xu} \\ H_{ux} & H_{uu} \end{bmatrix} \begin{bmatrix} -f_{x}^{-1} f_{u} \\ I \end{bmatrix} du + O(3)$$

To ensure that this stationary point is a minimum we need dL>0 to the second order for all increments du:

$$\left[-f_{u}^{T} f_{x}^{-T} \quad I \right] \begin{bmatrix} H_{xx} & H_{xu} \\ H_{ux} & H_{uu} \end{bmatrix} \begin{bmatrix} -f_{x}^{-1} f_{u} \\ I \end{bmatrix} > 0$$

$$H_{uu} - H_{ux} f_{x}^{-1} f_{u} - f_{u}^{T} f_{x}^{-T} H_{xu} + f_{u}^{T} f_{x}^{-T} H_{xx} f_{x}^{-1} f_{u} > 0$$

$$\left. \frac{\partial^2 L}{\partial u^2} \right|_{f=0} = H_{uu} - H_{ux} f_x^{-1} f_u - f_u^T f_x^{-T} H_{xu} + f_u^T f_x^{-T} H_{xx} f_x^{-1} f_u$$
 (4)

Examples:

(a)
$$L(x,u) = \frac{1}{2} \begin{bmatrix} x & u \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix} + \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix}$$

 $f(x,u) = x - 3 = 0$

(b)
$$L(x,u) = \frac{1}{2} \left(\frac{x^2}{a^2} + \frac{u^2}{b^2} \right)$$

 $f(x,u) = x + mu - c = 0$

(c)
$$L(x,u) = \frac{1}{2}x^{T}Qx + \frac{1}{2}u^{T}Ru$$
$$f(x,u) = x + Bu + c = 0$$

2.5 Optimization with constraints – Lagrange multiplier

We now produce an interpretation of the Lagrange multiplier. Let us suppose that the constraints are increased by infinitesimal amounts so that we have f(x,u)=df, where df is an infinitesimal constant vector. How does the optimal value change?

$$dH_{x}^{T} = H_{xx}dx + H_{xu}du + f_{x}^{T}d\lambda = 0$$

$$dH_{u}^{T} = H_{ux}dx + H_{uu}du + f_{u}^{T}d\lambda = 0$$

$$df = f_{x}dx + f_{u}du$$

The partial derivatives are evaluated at the original optimal value. These equations determine dx, du, $d\lambda$.

$$dx = f_x^{-1}df - f_x^{-1}f_u du$$

$$d\lambda = -f_x^{-T} \left(H_{xx} dx + H_{xu} du \right)$$

$$du = -\left(\frac{\partial^2 L}{\partial^2 u} \right)_{f=0}^{-1} \left[H_{ux} - f_u^T f_x^{-T} H_{xx} \right] f_x^{-1} df = -Cdf$$
ontrol

ME 433 - State Space Control

Existence of a neighboring optimal solution (for infinitesimal change in f) is guaranteed by

 $L_{uu} = \left(\frac{\partial^2 L}{\partial^2 u}\right)_{f=0} > 0$

which is the sufficient condition for a local minimum (Equation (4)). Substituting the expression for dx and du in (3), and using $H_x = H_u = 0$, we get

$$dL = -\lambda^{T} df + \frac{1}{2} df^{T} \left[f_{x}^{-T} H_{xx} f_{x}^{-1} - C^{T} L_{uu} C \right] df$$

$$\frac{\partial L_{\min}}{\partial f} = -\lambda^{T}$$

$$\frac{\partial^{2} L_{\min}}{\partial f^{2}} = f_{x}^{-T} H_{xx} f_{x}^{-1} - C^{T} L_{uu} C$$

- 2.6 Optimization with constraints Numerical solution
- 1. Select initial *u*
- 2. Determine x from f(x,u)=0
- 3. Determine λ from $\lambda^T = -L_x f_x^{-1}$
- 4. Determine the gradient vector $H_u = L_u + \lambda^T f_u$
- 5. Update the control/decision vector by $\Delta u = -kH_u$ for k>0 (scalar)

(Steepest Descendent Method)

6. Determine the predicted change $\Delta L = H_u^T \Delta u = -kH_u^T H_u$. Stop if small enough. Go to step 2 otherwise.