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Problem Description

i

Kinetic Control

The goal of the controller is to make the
kinetic (density and temperature) radial
profiles converge to their desired
equilibrium profiles.

We are interested in constructing a
stabilizing controller that:

' v achieves  stability for  unstable
I\ equilibrium profiles

v increases performance for stable
% . equilibrium profiles

Burn Control

Why do we want to control MHD Instability Avoidance

. . High-beta and High-confinement modes
?
the kinetic proﬁles. access Confinement Time Improvement

Transport Reduction

.
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Model — Non-Burning plasma

Energy Equation
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Density Balance Equation
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Equilibrium Profiles

E(rt)=E@)+E(rt)
n(rit)=n(r)+n(rt)

Equilibrium Equations
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Boundary Conditions

%—f(o )=0, 5@ = k.E(a), g—'j( 0)=0, 2—:_1(61) =k,n(a)
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Deviation Equations - Energy

Energy Equation:
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Deviation Equations - Density

;

Density Equation:
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Deviation Equations — Boundary Conditions

Boundary Conditions:

~

a—E(O,t) =0, a—E(a,t)zkEE(a,t)+AE,,
or or

a—n(O,z‘):O, a—n(a,t):knﬁ(a,t)+Aﬁr
or or
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UCSh Deviation Equations

Energy Equation:
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Density Equation:
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Boundary Conditions:
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Controller Design — Method Summary

Boundary Control ——»

T

Stabilizing BC <+——

NONLINEAR PDE MODEL

l Discretization in Space

NONLINEAR ODE MODEL

Tl Backstepping Transformation

TARGET SYSTEM
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ucsh Controller Design — Discretization Method
10 [rHéx}: 0 {Hﬁx}rlH@
ror or| or|l or| r or
ax‘ Xigt =X
or|; h
ox ox
H i+1/287 -H i—1/267
0 { H ox } _ Flivi2 Vlic12
orl or] h
Xign — i Xi =i
_ Hi+1/2( l lh )_Hil/z( I lj
h
_ H iv12%i01 2Hx,—H i-1/2%i-1
— e
b ML Ly Ly HHLR S
h 2 2 2 h 2 2 2



|“ll

i

i
L

|

Controller Design — Discretization Equations

Energy Equation:
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Controller Design — Discretization Equations

Density Equation:
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Equilibrium Profiles

|

Energy Equation:
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Controller Design — Target System

f

Pseudo-Energy Equation:
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Pseudo-Density Equation:
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Controller Design — Discretized Target System

Pseudo-Energy Equation:
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Controller Design — Target System - Stability
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Controller Design — Target System - Stability

Stabilizing
Boundary Conditions
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By Young’s Inequality we conclude that

V<-CV
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Controller Design — Backstepping Transformation
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Controller Design — Boundary Control

Boundary Conditions for the Original System:
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Simulation
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UCSD Simulation Results
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Figure 1-b: Density Profile Evolution



Simulation Results
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Simulation Results
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HCSH Simulation Results
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HCSH Simulation Results

10 o emmr== 0

1
'
"

"

[

F-=-=--q---=---f-----q------p-----q--=-=--=-p--=---19

Time [gsec]

Density

[

x10"

(S

9

Density Profile Evolution

7
N,
G- ”‘w

10
 Equilibrium Profile

5 B A R

o
s

2

Time [sec]

Density

- Plasma Core

e :
s AN,
G e

R

“initial Profile




z;

Simulation Results
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Figure 2-a: Energy Modulation at the Edge Figure 2-b: Density Modulation at the Edge
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Simulation Results
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UCSD Simulation Results
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Simulation Results
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Simulation Results

Open Loop: Energy Profile Evolution
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Future Work

» A zero-dimensional model of the tokamak scrape-off layer will be
used as a complement of the one dimensional model for the core. This
will allow to work with more realistic boundary conditions and therefore
more realistic profiles. In addition, this will make possible a study of
feasibility of achieving the necessary modulation of the kinetic variables
at the edge by physical means.

» Actuation directly in the core of the plasma would be considered if
necessary.

» A burning plasma model will be considered.

» A more updated set of correlations will be used for the physical
parameters of the model.

» The problem of simultaneous control of the kinetic and current
profiles will be studied.



