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Abstract— The control of the plasma density and temperature
profiles is one of the fundamental problems in nuclear fusion
reactors. During reactor operation, the spatial profiles of
deuterium-tritium fuel, alpha particles generated by fusion
reactions, and energy must be precisely regulated. In this
work we combine distributed actuation with a backstepping
boundary control law to stabilize an unstable equilibrium in
a burning plasma. Disturbance estimation update laws are
included to improve disturbance rejection and tracking. A
one-dimensional approximation of the transport equation for
energy, as well as for the densities of deuterium-tritium fuel ions
and alpha particles, is represented in cylindrical coordinates
by a system of partial differential equations (PDEs). The PDE
system is discretized in space using a finite difference method
and a backstepping design is applied to obtain a discrete
transformation from the original system into a particular target
system chosen to facilitate the use of additional actuators
distributed throughout the plasma. Numerical simulations show
that a controller designed on a very coarse grid can stabilize
the system and that distributed actuation improves the system
response.

I. INTRODUCTION

For nuclear fusion to become an economical means of
producing energy, tokamak reactors will have to operate at
high fusion gain (the ratio of power produced to power
required to sustain a discharge) for extended durations,
ideally reaching steady state. In present-day experiments,
much work is being done to identify operating scenarios that
could lead to steady-state operation and reduced reactor size
and cost. However, precise feedback control over plasma
parameters, including the magnitudes and spatial distribu-
tions of kinetic variables (e.g., plasma density, temperature,
and current), may be required to achieve and maintain these
scenarios. Furthermore, in burning plasmas, for which the
dominant source of heating needed to sustain the plasma is
from fusion, the task of regulating operating conditions will
be complicated by the nonlinear coupling of fusion power
with the dynamics of density and temperature, and by a
potential thermal instability.

Most approaches to the control of kinetic variables in toka-
maks begin by considering 0-D (zero-dimensional) models
of transport in which the system equations are averaged over
the volume of the plasma. This allows the problem to be ap-
proached with lumped-parameter control design techniques.
The resulting nonlinear model is often simplified further by
linearizing the system around a particular operating point,
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enabling the use of standard linear control techniques. In
[1], [2], [3], the linearization of the model was avoided,
and nonlinear and adaptive control techniques were used to
achieve much higher levels of performance and robustness.
However, these 0-D control efforts do not take into account
the 1-D (one-dimensional) effect of modulating the bulk
heating, fueling, and impurity injection on the shape of the
spatial profiles. In a reactor, the heating and fueling rates are
indeed distributed throughout the plasma and affect the shape
of the kinetic profiles, which in turn affects confinement,
magnetohydrodynamic stability, and reactor performance.

The importance of controlling kinetic profiles in burning
plasmas has been recognized in previous work, including,
[4], [5], [6], [7], and [8]. In these pieces of work, a 1-D
plasma model is represented by a set of partial differential
equations (PDEs) and various methods are utilized to reduce
the distributed parameter model to a lumped-parameter one.
The resulting set of ODEs are then linearized and conven-
tional linear control techniques are used for controller design.
Through a backstepping boundary feedback technique, the
control methods presented in [9], [10] avoided linearization,
stabilizing density and temperature profiles in non-burning
and burning plasmas, respectively. The backstepping ap-
proach avoids the operating limits created by linearization. In
this work, we extend the approach to include both boundary
and distributed actuation, and to include online disturbance
estimation, improving system response, disturbance rejec-
tion, and tracking performance.

The paper is organized as follows. In Section II a one-
dimensional burning plasma model is introduced. The control
objective and controller design are outlined in Section III
and Section IV, respectively. Simulation results showing
successful stabilization of an unstable set of equilibrium
profiles are contained in Section V. Concluding remarks and
a discussion of future work are given in Section VI.

II. ONE-DIMENSIONAL BURNING PLASMA MODEL

The model used in this work includes the dynamics of
the density of α-particles, deuterium-tritium fuel, and stored
energy, and is based on standard 1-D transport equations. To
simplify presentation, we consider a constant diffusivity and
a negligible pinch velocity, however, the control approach
could be extended to account for these effects, as done in [9].
The particle densities and energy are governed by:
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where 〈σν〉 is the DT reactivity, SDT is the distributed DT
fuel injection, and Qα = 3.52 MeV is the alpha particle
energy. Paux and Prad represent the distributed auxiliary
power and radiation losses, respectively. We consider dis-
tributed actuators of the form SDT = u f uel(t)ŜDT (r), Paux =
uaux(t)P̂aux(r), i.e., fixed spatial deposition profiles ŜDT (r)
and P̂aux(r) and controllable magnitudes u f uel(t) and uaux(t).
Deposition profiles used in this work are shown in Figure 1.

The DT reactivity 〈σν〉 =
exp
( a1

T r +a2 +a3T +a4T 2 +a5T 3 +a6T 4
)

is a highly
nonlinear, positive, and bounded function of the plasma
temperature T [11]. The plasma temperature is a function
of the energy and total plasma density, i.e., T = 2

3
E
n , and

the total plasma density is given by the sum of ion and
electron densities, ni = nDT + nα and ne = nDT + 2nα ,
i.e., n = 2nDT + 3nα . The radiation loss Prad considered
in this work is given by Prad = Pbrem = AbZe f f n2

e
√

T .
where Ab = 5.5× 10−37 Wm3/

√
keV is the bremsstrahlung

radiation coefficient, Ze f f =
∑

i
niZ2

i
ne

= nDT+4nα

ne
is the

effective atomic number, and ne is the electron density.
Note that the control design presented in this work could
easily be extended to include other forms of radiation losses
and this choice of model is only used for simplification of
presentation.

The boundary conditions are given by
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nα(a) =uα(t), nDT (a) = uDT (t), E(a) = uE(t), (5)

where uα(t), uDT (t), and uE(t) are considered actuators.

III. CONTROL OBJECTIVE

At equilibrium, the model simplifies to a set of ODEs with
respect to the space coordinate, i.e.,
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where we have written the alpha particle generation as Sα =( nDT
2

)2 〈σν〉 and we use upper bar notation to represent the
equilibrium value of a variable. The equilibrium profiles are
determined by the equilibrium fueling ū f uel , heating ūaux,
and boundary conditions ūα , ūDT , and ūE .

We consider perturbations in the profiles, i.e., nα(r, t) =
n̄α(r) + ñα(r, t), nDT (r, t) = n̄DT (r) + ñDT (r, t), E(r, t) =
Ē(r) + Ẽ(r, t), Sα(r, t) = S̄α(r) + S̃α(r, t), and Prad(r, t) =
P̄rad(r)+ P̃rad(r, t), and the presence of distributed feedback
(ũ f uel , ũaux) and constant input disturbances (d f uel , daux), i.e.,

SDT (r, t) =
(
ū f uel + ũ f uel +d f uel

)
ŜDT (r)

Paux(r, t) = (ūaux + ũaux +daux) P̂aux(r)
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Fig. 1: Distributed actuator deposition profiles used in this work.

We also consider boundary feedback (ũα , ũDT , ũE ) and con-
stant boundary disturbances (dα , dDT , dE ). We first attempt to
cancel the effect of the unknown disturbances by defining the
feedback lawsũα = vα− d̂α , ũDT = vDT − d̂DT , ũE = vE− d̂E ,
ũ f uel = v f uel − d̂ f uel , ũaux = vaux− d̂aux, where vα , vDT , vE ,
v f uel , and vaux are inputs to be defined later, and d̂α , d̂DT ,
d̂E , d̂ f uel , and d̂aux are estimates of the disturbances, which
will be obtained from update laws, also to be defined later.
We define the disturbance estimation errors d̃α = dα − d̂α ,
d̃DT = dDT − d̂DT , d̃E = dE − d̂E , d̃ f uel = d f uel − d̂ f uel , and
d̃aux = daux− d̂aux. By substituting (6), (7), and (8) into (1),
(2), and (3), the dynamics of the deviation variables ñα(r, t),
ñDT (r, t), and Ẽ(r, t) can be written as
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The boundary conditions are written as
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ñα(a) = vα(t)+ d̃α , ñDT (a) = vDT (t)+ d̃DT ,

Ẽ(a) =vE(t)+ d̃E . (13)

The objective of the controller is to force ñα(r, t), ñDT (r, t)
and Ẽ(r, t) to zero using distributed actuators v f uel and vaux,
and boundary actuators vα , vDT , and vE , while accounting
for the effect of disturbance estimation errors.

IV. CONTROLLER DESIGN

A backstepping technique is used to transform the original
system of equations into a particular target system. The target
system is rendered asymptotically stable through the choice
of boundary conditions, distributed actuator control laws,
and update laws for the disturbance estimations. Figure 2
illustrates the approach. By defining h = 1

N , where N is an
integer, and using the notation xi(t) = x(ih, t), i = 0,1, ...,N,
the discretized version of (9) - (11) can be written as
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Fig. 2: Schematic of the backstepping control design.
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ñ1
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DT
h

=
Ẽ1− Ẽ0
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∂ Ẽk P̂k
aux

Bi
f uel = Ŝi
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0
α , . . . , ñ
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Fig. 3: Block diagram of simulation process.

The target system is chosen to maintain the parabolic
character of the partial differential equation, remove the
problematic nonlinear terms, and facilitate the combined use
of distributed feedback and backstepping boundary feedback.
By subtracting (19) from (14), (20) from (15), and (21) from

(16), the expressions ω̇ i−1 = ˙̃ni
α − ˙̃wi, β̇ i−1 = ˙̃ni

DT − ˙̃mi, and
α̇ i−1 = ˙̃E i− ˙̃f i are obtained, which can be put in terms of
ωk−1 = ñk

α − w̃k, β k−1 = ñk
DT − m̃k, and αk−1 = Ẽk− f̃ k, for

k = i−1, i, i+1 and rearranged to obtain
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Through its dependence on ˙̃nDT , ˙̃E, and ˙̃nα , expression (27)
depends on the to-be-designed control laws v f uel and vaux,
which is not in general spatially causal, violating the strict-
feedback structure required for backstepping. It also depends
on the unknown terms d̃ f uel and d̃aux. However, by the choice
of target system, the terms involving Ωi
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aux remove the undesirable terms from the
expressions (24), (25), and (26), i.e.,
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(a) Boundary feedback only.

(b) Simultaneous boundary and distributed feedback.

Fig. 4: Profile error evolution with boundary feedback only (a) and with both boundary and distributed feedback (b). Solid red lines
indicate the boundary actuation.
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DT + ñk−1
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ñk+1
DT − ñk
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Subtracting the boundary conditions in (23) from (18), the
boundary control laws can be defined as

vα =ω
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N−1, vE = α
N−1 (29)

The distributed control laws v f uel and vaux, and the distur-
bance estimation update laws are designed by considering
the control Lyapunov function
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weights, and kα , kDT , kE , k f uel , and kaux are positive con-
stants. Noting the equations (19), (20), and (21), and the
boundary conditions (22) and (23), V̇ can be written as
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We take the control laws and update laws

v f uel =−C f uelΦ f uel , vaux =−CauxΦaux, (31)
˙̂d f uel = k f uelΦ f uel ,

˙̂daux = kauxΦaux, (32)
˙̂dα = kα Bw,

˙̂dDT = kDT Bm,
˙̂dE = kEB f (33)

where C f uel ≥ 0 and Caux ≥ 0, which, assuming constant
disturbances, reduces (30) to
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Fig. 5: Boundary actuation (a-c), distributed actuation (d,e), and l2 norm of profile error (f), comparing a simulation with boundary
actuation only (red, dashed) to one employing simultaneous boundary and distributed actuation.

Since Aw, Am, and A f are positive definite, we have that V̇ ≤
0. Since V ≥ 0 and V̈ is bounded, the conditions of Barbalat’s
lemma are satisfied, and we have that V̇ → 0. This implies
that w̃, m̃, and f̃ are driven to zero, guaranteeing asymptotic
stability of the target system, and, consequently, ñα , ñDT ,
and Ẽ. The control strategy is summarized in Figure 3. A
set of equilibrium profiles is regulated by the backstepping
controller through actuation of the ion densities and energy at
the plasma edge, as well as the magnitudes of the distributed
heating and fueling actuators to achieve the desired profiles.

V. SIMULATION RESULTS

In the following, the discretized burning plasma system
was simulated using an implicit finite difference scheme
with Nsim = 50, and the time step chosen to achieve suitable
accuracy. The results shown are for an open-loop unstable
equilibrium described by DE = 0.4, DDT = 0.2, Dα = 0.13,
ūaux = 3.8×104, ū f uel = 1.6×1019, ūα = 9.5×1017, ūDT =
5.3× 1019, and ūE = 2.0× 105. As a first test, two closed
loop simulations were run: one with boundary actuation only
(i.e., C f uel = Caux = 0), and one with simultaneous bound-
ary and distributed actuation (Qi

w = 10−36, Qi
m = 10−38,

and Qi
f = 10−10 for 1, . . . , i, . . .N− 1, C f uel = 0.125× 1038,

Caux = 0.1×1010). Neither simulation included disturbances
or disturbance estimation. In both cases, the controller was
designed using Ncontrol = 3, i.e., utilizing two measurement
points inside the plasma core, and Cw = Cm = C f = 0.15.
Figure 4 shows the resulting profile evolutions. In both cases,
the nonlinear controller was able to stabilize the desired equi-
librium, however, the use of distributed actuation improved
the response by adding more control authority in the interior
of the plasma. Figure 5 (a)-(e) compares the boundary and
distributed actuation during the two simulations. By includ-
ing distributed actuation, the amount of boundary actuation

needed to stabilize the system was reduced. The weighted
norm of the profile error

L =

√√√√N−1∑
i=1

[(
10−5Ẽ i

)2
+(10−18ñi

α)
2 +
(
10−19ñi

DT

)2
]

h

during both simulations is compared in Figure 5 (f), showing
that the profile error was driven to zero more quickly when
distributed actuation was added. To test disturbance rejection,
a second set of simulations were run with input distur-
bances dα = −0.2ūα , dDT = −0.2ūDT , dE = 0.2ūE , d f uel =
−0.2ū f uel , and daux = 0.2ūaux. The first simulation was run
without online disturbance estimation, while estimation was
active in the second (kα = 1.2× 1036, kDT = 1.5× 1038,
kE = 1.2×1010, k f uel = 0.03×1010, and kaux = 0.06×1038).
Figures (6) (a)-(e) compare the realized (controlled actuation
+ input disturbance) values of nα(a) = uα + dα , nDT (a) =
uDT + dDT , E(a) = uE + dE , distributed heating uaux + daux,
and distributed fueling u f uel + d f uel , respectively, to the
values associated with the desired equilibrium. Figure 6 (f)
compares the weighted norm L for both cases. In the
first simulation, the system was stabilized by the feedback
controller and the realized actuators converged to constant
values, however, without estimation, a steady-state profile
error developed, as made clear in Figure 6 (f). Through on-
line estimation of the disturbances in the second simulation,
the controller was able to account for the disturbances and
drive the profile error to zero. Indeed, the realized actuators
converged to the reference values associated with the desired
equilibrium. Figure 7 compares the initial and final error
profiles obtained in the two simulations. The effect of input
disturbances is removed at steady-state when disturbance
estimation is active.
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Fig. 6: Realized (controlled input + input disturbance) boundary actuation (a-c), distributed actuation (d,e), and weighted norm of the
profile error (f) during simulations without disturbance estimation (black, dash-dot) and with disturbance estimation (blue, solid). With
disturbance estimation, the realized actuator values converge to the reference values (red, dashed), and the profile error is driven to zero.
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Fig. 7: Initial (red, dashed) error profiles compared to final errors with disturbance estimation (blue, solid) and without (black, dotted).

VI. CONCLUSIONS AND FUTURE WORK

A nonlinear feedback controller based on backstepping
that achieves asymptotic stabilization of the equilibrium
kinetic profiles in a cylindrical burning plasma has been
designed. The controller uses actuation of the α-particle,
energy, and DT density at the plasma’s edge, as well as
distributed heating and fueling to stabilize the profiles. Sim-
ulations show that a controller using a coarse discretization
can successfully control the profiles. While feasibility of
controlling kinetic profiles in a burning plasma using a
combination of distributed and boundary feedback has been
shown, more study will be necessary to find methods for
achieving the requested values of uα , uDT , and uE through
modulation of the plasma edge and scrape-off layer (SOL)
using gas puffing, gas pumping, or impurity injection.
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