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Nuclear fusion
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The tokamak
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The next step: ITER
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Burn control

Regulation of plasma density, temperature, and fusion power

Control needed for modification of burn condition during operation

For certain operating conditions, the burn condition is unstable:
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Previous approaches to burn control

Previous work has focused on controlling spatial averages of density
and temperature

Most approaches consider only one of the available actuators (SISO)
and design controllers based on linearized models

In previous work, we have proposed a nonlinear controller design using
the available actuators simultaneously

I Much better performance results from this design
I Still, the spatial distribution of parameters is not considered
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Profile control in burning plasmas

For optimal reactor performance, the spatial profiles, not just average
values, of many of the plasma parameters must be controlled

Density and current profile control can improve:
I energy confinement
I fusion power
I plasma stability
I the fraction of non-inductive plasma current
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Nonlinear processes effecting the burn condition

Reaction rate

Sα =
(nDT

2

)2
〈σν〉 (1)

where 〈σν〉 = exp
( a1
T r

+ a2 + a3T + a4T
2 + a5T

3 + a6T
4
)

(2)

T =
2

3

E

n
(3)

n = 2nDT + 3nα (4)

Radiation losses

Prad = AbZeffn
2
e

√
T (5)

where ne = nDT + 2nα (6)

Zeff =
∑
i

niZ
2
i

ne
=
nDT + 4nα

ne
(7)

M. D. Boyer, E. Schuster (Lehigh) Fusion Burn Control m.dan.boyer@lehigh.edu 8 / 19



1-D burning plasma model

Energy and density transport
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Desired equilibrium

Energy and density transport
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Deviations from equilibrium

Energy and density transport

∂ñα
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Backstepping technique
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Controller design: discretization

First, we discretize each subsystem and desired target system:
System
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Controller design: backstepping transformation

We then seek a backstepping transformation of the form
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This can be done taking the time derivative of the transformation:
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This expression can then be recursively evaluated starting with β0 = 0.
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Controller design: boundary control law

By subtracting the boundary condition of the target system from the
boundary condition of the original system and solving for the input, we
obtain:

∆(ñDT )r =
βN−1 − βN−2

h
+ kDT ñ

N
DT −G(ñNDT − βN−1) (30)

which is the desired boundary control law. Since we have discretized the
system, we can put this in terms of the value of the density at the
plasma’s edge:
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Simulation results - actuation at the plasma’s edge
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Simulation results - profile error evolution
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Simulation results - Initial, final, and desired profiles
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Conclusions & Future work

A nonlinear boundary feedback controller for kinetic profiles within a
burning plasma has been developed.

Simulations show that a controller designed with just one step of
backstepping is able to stabilize a particular unstable equilibrium

Future work:
I Develop a model of the plasma scrape-off layer to create more realistic

boundary conditions
I Include interior actuation through pellet injection and auxiliary heating
I Include ways to deal with uncertainty in the model
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