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Hyperbolic PDEs: Wave Equations

Wave Equation with “Free End” Damping

String/Cable of unit length:

utt = uxx (wave equation)
ux(0) = 0 (“free” end)
u(1) = 0 (“pinned” end)

Energy/Lyapunov function

E =
1
2

(
∥ux∥2+∥ut∥2

)

ux = “shear” potential energy
ut = velocity kinetic energy
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Hyperbolic PDEs: Wave Equations

Ė =
Z 1

0
uxuxtdx+

Z 1

0
ututtdx (chain rule)

=
Z 1

0
uxuxtdx+

Z 1

0
utuxxdx

=
Z 1

0
uxuxtdx+ut(x)ux(x)|10−

Z 1

0
utxuxdx (integration by parts)

= ut(x)ux(x)|10
= 0 (using BCs)

Conservation of energy: E(t) ≡ E(0). The system is marginally/neutrally stable. Inifinitely
many eigenvalues on the imaginary axis.

A classical method of asymptotically stabilizing the system is to add “boundary damping:”

ux(0) = c0ut(0).

“Passive” control in both senses of the word (no active actuator and exploits the PRness
and ‘zero-state-observability’ of the plant).
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Hyperbolic PDEs: Wave Equations

Asymptotic stability proof by Lyapunov possible but tricky. Eigenvalue calculation easier.

First, the solution postulated as

u(x, t) = e!t"(x).

Substituting this into the PDE gives

!2e!t"(x) = e!t"′′(x),

and using the two BCs gives

e!t"(1) = 0
e!t"′(0) = c0!e!t"(0).

Sturm-Louiville problem for wave eqn with boundary damping:

"′′ −!2" = 0
"′(0) = c0!"(0)
"(1) = 0.
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Hyperbolic PDEs: Wave Equations

The solution given by

!(x) = e"x+Be−"x

From the BC at x= 1 we get

B= −e−2".

From the BC at x= 0 we get

!′(0)− c0"!(0) = 0
"(1+ e2")− c0"(1− e2") = 0

e2" = −1− c0
1+ c0

.

Solving for " gives

"= −1
2
ln

∣∣∣∣
1+ c0
1− c0

∣∣∣∣+ j#
{
n+ 1

2 0≤ c0 < 1
n c0 > 1

Eigenvalues at −$ for c0 = 1 (solution → 0 in finite time).
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Hyperbolic PDEs: Wave Equations

!/2

3!/2

!

5!/2

✻

❄

✲

✲

✲

✲

−!/2

c0 → 1

Re

Im

In real systems with (even the slightest) damping, the ideal c0 is not unity. The dependence
on c0 is extremely sensitive around c0 = 1.

The “boundary damper” feedback is very effective in adding damping to eigenvalues but it
requires actuation on the free end x= 0, which is seldom feasible.
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Hyperbolic PDEs: Wave Equations

Backstepping: Actuation at the “Base”

Suppose we apply the “boundary damper” feedback using an active actuator at the base,
while keeping the other end of the string/cable free:

utt = uxx
ux(0) = 0
ux(1) = −c1ut(1) , where c1 > 0.

(The sign of the gain must change to accommodate the switch from one boundary to the
other, which is equivalent to the reversal of the direction of the x axis.)

Due to the Neumann BC the system has one eigenvalue at the origin != 0.

As a result the system has any arbitrary constant u(x) = const. as an equilibrium profile.

To deal with this multitude of arbitrary equilibriums a more sophisticated (backstepping)
controller is needed at x= 1 if the boundary condition at x= 0 is to remain free.
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Hyperbolic PDEs: Wave Equations

Target system for the backstepping controller:

wtt = wxx
wx(0) = c0w(0)
wx(1) = −c1wt(1) , where c1 > 0.

The BC wx(0) = c0w(0) doesn’t use !t , i.e., it is not of “damping” type but of “Robin” type.

The idea with the BC wx(0) = c0w(0) is to use large c0 to make it behave like w(0) ≈ 0.

Lyapunov function for target system:

V =
1
2

(
∥wx∥2+∥wt∥2+ c0w2(0)

)
+"

Z 1

0
(1+ x)wx(x)wt(x)dx

Positive definiteness: With Poincare’s and Young’s inequalities, one can show that for
sufficiently small ", ∃ m1,m2 > 0 s.t.

m1U !V ! m2U , where U = ∥wx∥2+∥wt∥2+w2(0)

Prof. Eugenio Schuster ME 450 - Control of PDE Systems Spring 2021 8 / 21



Hyperbolic PDEs: Wave Equations

V̇ =
Z 1

0
wxwtxdx+

Z 1

0
wtwttdx+ c0w(0)wt(0)

+!
Z 1

0
(1+ x)(wxtwt +wxwtt)dx

substituting target system

=
Z 1

0
wxwtxdx+

Z 1

0
wtwxxdx+wx(0)wt(0)

+!
Z 1

0
(1+ x)(wxtwt +wxwxx)dx

integration by parts

=
Z 1

0
wxwtxdx+wtwx|10−

Z 1

0
wtwxtdx+wx(0)wt(0)

+!
Z 1

0
(1+ x)(wxtwt +wxwxx)dx canceling terms

= !

(
Z 1

0
wxtwtdx+

Z 1

0
wxwxxdx+

Z 1

0
xwxtwtdx+

Z 1

0
xwxwxxdx

)

+wt(1)wx(1)

Prof. Eugenio Schuster ME 450 - Control of PDE Systems Spring 2021 9 / 21



Hyperbolic PDEs: Wave Equations

Notice that wxtwtdx= d
dx
w2t
2 and wxwxxdx= d

dx
w2x
2 and use integration by parts on the latter

two integrals involving an extra x term:

V̇ = wt(1)wx(1)+
!
2

[
(1+ x)(w2x +w2t )

]
|10− !

2

[
∥wx∥2+∥wt∥2

]

= −c1w2t +!(w2t (1)+w2x(1))− !
2

[
w2x(0)+w2t (0)

]
− !
2

[
∥wx∥2+∥wt∥2

]

V̇ = −
(
c1−!(1+ c21)

)
w2t (1)− !

2

(
w2t (0)+ c20w

2(0)
)

− !
2

[
∥wx∥2+∥wt∥2

]

which is negative definite for !< c1
1+c21

. One can further show that

U(t) ≤Me−t/MU(0)

for some possibly largeM.

This exponential stability result legitimizes our “target system.”
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Hyperbolic PDEs: Wave Equations

Backstepping Design. The transformation

w(x) = u(x)+ c0
Z x

0
u(y)dy

and the boundary controller

ux(1) = −c1ut(1)− c0u(1)− c1c0
Z 1

0
ut(y)dy

transform utt = uxx, ux(0) = 0 into wtt = wxx, wx(0) = c0w(0), wx(1) = −c1wt(1).

Homework: Prove this result.

So, k(x,y) = c0!

Gain selection guideline: c0 large and c1 around 1.

Term-by-term discussion: −c1ut(1)− c0u(1) is PD control; −c1c0
R 1
0 ut(y)dy is a spatially

averaged velocity and is a backstepping “damping” term.

Dirichlet implementation:

u(1) = − 1
c1s+ c0

[ux(1)]−
s

c1s+ c0

[
Z 1

0
u(y)dy

]
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First-Order Hyperbolic PDEs and Delay Equations

First Order Hyperbolic PDEs

Traffic flow, chemical reactors, heat exchangers, delays.

The general first order hyperbolic PDE tractable by backstepping:

ut = ux+g(x)u(0)+
Z x

0
f (x,y)u(y)dy

u(1) = control .

Only one spatial derivative → only one boundary condition.

For g or f positive and large → open-loop unstable.

Transformation and boundary controller

w(x) = u(x)−
Z x

0
k(x,y)u(y)dy

u(1) =
Z 1

0
k(1,y)u(y)dy .
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First-Order Hyperbolic PDEs and Delay Equations

Target system

wt = wx
w(1) = 0.

Solution

w(x, t) =

{
w0(t+ x) 0≤ t < 1
0 t ≥ 1,

where w0(x) is the initial condition. Pure delay—converges to zero in finite time.

Kernel PDE (well posed):

kx+ ky =

Z x

y
k(x,+) f (+,y)d+− f (x,y)

k(x,0) =
Z x

0
k(x,y)g(y)dy−g(x) .
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First-Order Hyperbolic PDEs and Delay Equations

Example 1:
ut = ux + gebxu(0), (1)

where g and b are constants. In this case, the kernel equation becomes

kx + ky = 0, (2)

which has a general solution k(x, y) = φ(x− y). If we plug this solution into the
BC equation, we get the integral equation

φ(x) =

∫ x

0

gebyφ(x− y)dy − gebx. (3)

The solution to this equation can be obtained by applying Laplace Transform in x:

φ(s) = − g

s− b− g
, (4)

and after taking the inverse Laplace transform, φ(x) = −ge(b+g)x. Therefore, the
solution to the kernel PDE is k(x, y) = −ge(b+g)(x−y) and the controller given by

u(1) =

∫ 1

0

k(1, y)u(y)dy. (5)
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First-Order Hyperbolic PDEs and Delay Equations

Example 2:

ut = ux +

∫ x

0

feb(x−y)u(y)dy, (6)

where f and b are constants. In this case, the kernel equations become

kx + ky =

∫ x

y

k(x, ξ)feb(ξ−y)dξ − feb(x−y), (7)

k(x, 0) = 0. (8)

After we differentiate (7) with respect to y, the integral term is eliminated:

kxy + kyy = −fk − bkx − bky. (9)

Since we now increased the order of the equation, we need an extra boundary
condition. We get it by setting y = x in (7):

d

dx
k(x, x) = kx(x, x) + ky(x, x) = −f, (10)

which, after integration, becomes k(x, x) = −fx.
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First-Order Hyperbolic PDEs and Delay Equations

Introducing the change of variables

k(x, y) = p(z, y)eb(z−y)/2, z = 2x− y, (11)

we get the following PDE for p(z, y):

pzz(z, y)− pyy(z, y) = fp(z, y), (12)

p(z, 0) = 0, (13)

p(z, z) = −fz. (14)

The solution is given by

p(z, y) = −2fy
I1(

√
f(z2 − y2))√
f(z2 − y2)

, (15)

or, in the original variables,

k(x, y) = −feb(x−y)y I1(2
√
fx(x− y))√

fx(x− y)
, (16)

and the controller given by

u(1) =

∫ 1

0

k(1, y)u(y)dy. (17)
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First-Order Hyperbolic PDEs and Delay Equations

Systems with Delay

Ẋ = AX+BU(t−D)

Assume: (A,B) controllable and matrix K found such that A+BK is Hurwitz.

A hyperbolic PDE representation:

Ẋ = AX+Bu(0, t)
ut = ux

u(D, t) = U(t)

e−sD ✲ Ẋ = AX +BU(t−D) ✲
X(t)U(t−D)U(t)

✲

u(D, t) u(0, t)

✛x

1 0

✲ direction of convection

Note that u(x, t) =U(t+ x−D).
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First-Order Hyperbolic PDEs and Delay Equations

Consider the backstepping transformation

w(x) = u(x)−
Z x

0
q(x,y)u(y)dy− ,(x)TX

and the target system

Ẋ = (A+BK)X+Bw(0)
wt = wx

w(D) = 0 .

Since w becomes zero in finite time, the w-system is exponentially stable.

As usual, let us calculate the time and spatial derivatives of the transformation:

wx = ux−q(x,x)u(x)−
Z x

0
qx(x,y)u(y)dy− ,′(x)TX

wt = ut−
Z x

0
q(x,y)ut(y)dy− ,(x)T [AX+Bu(0)]

= ux−q(x,x)u(x)+q(x,0)u(0)−
Z x

0
qy(x,y)u(y)dy

−,(x)T [AX +Bu(0)] .
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First-Order Hyperbolic PDEs and Delay Equations

We get three conditions:

qx+qy = 0
q(x,0) = ,(x)TB

,′ = AT ,

The first two conditions form a familiar first order hyperbolic PDE and the third one is a
simple ODE.

To find the initial condition for the ODE, we set x = 0 in w(x), which gives w(0) = u(0)−
,(0)TX , and hence

Ẋ = AX+Bu(0)+B
(
K− ,(0)T

)
X .

We thus get ,(0) = KT .
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First-Order Hyperbolic PDEs and Delay Equations

Therefore the ODE is

,′ = AT ,
,(0) = KT

The solution is

,(x)T = KeAx

The q-PDE is

qx+qy = 0
q(x,0) = ,(x)TB

The solution is given explicitly:

q(x,y) = KeA(x−y)B
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First-Order Hyperbolic PDEs and Delay Equations

This gives the control law:

u(D) =

Z D

0
KeA(D−y)Bu(y)dy+KeADX

or

U(t) = K
[
eADX(t)+

Z t

t−D
eA(t−-)BU(-)d-

]

Same controller as in Artstein (1982) but a better proof (complete Lyapunov function).

The equivalent of Smith Predictor for unstable systems.
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