

Control of PDE Systems

Lecture 9 (Meetings 17 & 18)

Eugenio Schuster

schuster@lehigh.edu
Mechanical Engineering and Mechanics
Lehigh University

Material provided by Prof. Miroslav Krstic and Dr. Andrey Smyshlyaev (UCSD)

Hyperbolic PDEs: Wave Equations

Wave Equation with “Free End” Damping

String/Cable of unit length:

$$\begin{aligned} u_{tt} &= u_{xx} && \text{(wave equation)} \\ u_x(0) &= 0 && \text{("free" end)} \\ u(1) &= 0 && \text{("pinned" end)} \end{aligned}$$

Energy/Lyapunov function

$$E = \frac{1}{2} \left(\|u_x\|^2 + \|u_t\|^2 \right)$$

$$\begin{aligned} u_x &= \text{“shear”} && \text{potential energy} \\ u_t &= \text{velocity} && \text{kinetic energy} \end{aligned}$$

Hyperbolic PDEs: Wave Equations

$$\begin{aligned} E &= \int_0^1 u_x u_{xt} dx + \int_0^1 u_t u_{tt} dx \quad (\text{chain rule}) \\ &= \int_0^1 u_x u_{xt} dx + \int_0^1 u_t u_{xx} dx \\ &= \int_0^1 u_x u_{xt} dx + u_t(x) u_x(x)|_0^1 - \int_0^1 u_{tx} u_x dx \quad (\text{integration by parts}) \\ &= u_t(x) u_x(x)|_0^1 \\ &= 0 \quad (\text{using BCs}) \end{aligned}$$

Conservation of energy: $E(t) \equiv E(0)$. The system is marginally/neutrally stable. Infinitely many eigenvalues on the imaginary axis.

A classical method of asymptotically stabilizing the system is to add “boundary damping:”

$$u_x(0) = c_0 u_t(0).$$

Hyperbolic PDEs: Wave Equations

Asymptotic stability proof by Lyapunov possible but tricky. Eigenvalue calculation easier.

First, the solution postulated as

$$u(x, t) = e^{\sigma t} \phi(x).$$

Substituting this into the PDE gives

$$\sigma^2 e^{\sigma t} \phi(x) = e^{\sigma t} \phi''(x),$$

and using the two BCs gives

$$\begin{aligned} e^{\sigma t} \phi(1) &= 0 \\ e^{\sigma t} \phi'(0) &= c_0 \sigma e^{\sigma t} \phi(0). \end{aligned}$$

Sturm-Louiville problem for wave eqn with boundary damping:

$$\begin{aligned} \phi'' - \sigma^2 \phi &= 0 \\ \phi'(0) &= c_0 \sigma \phi(0) \\ \phi(1) &= 0. \end{aligned}$$

Hyperbolic PDEs: Wave Equations

The solution given by

$$\phi(x) = e^{\alpha x} + B e^{-\alpha x}$$

From the BC at $x = 1$ we get

$$B = -e^{-2\sigma}.$$

From the BC at $x = 0$ we get

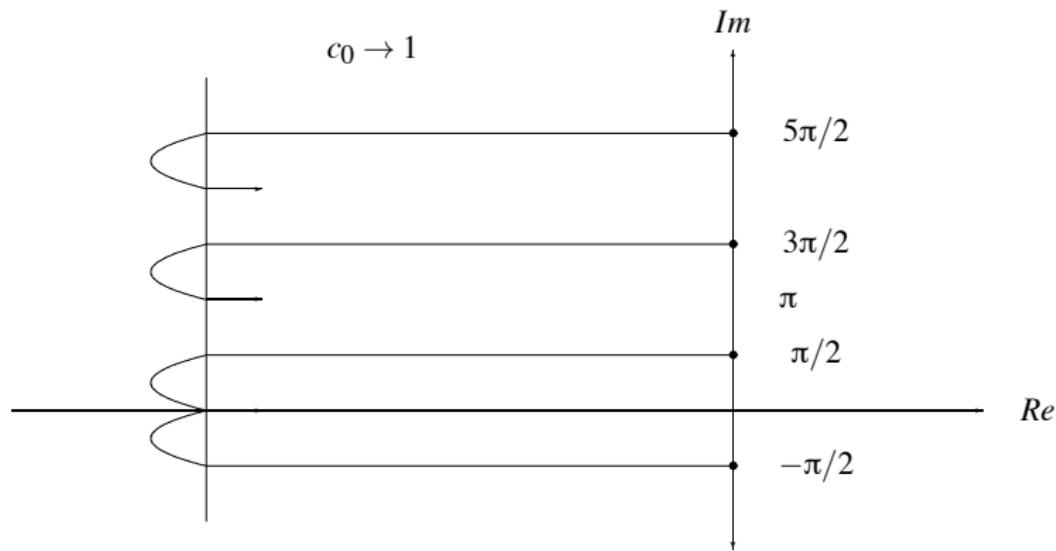
$$\begin{aligned}\phi'(0) - c_0 \sigma \phi(0) &= 0 \\ \sigma(1 + e^{2\sigma}) - c_0 \sigma(1 - e^{2\sigma}) &= 0 \\ e^{2\sigma} &= -\frac{1 - c_0}{1 + c_0}.\end{aligned}$$

Solving for σ gives

$$\sigma = -\frac{1}{2} \ln \left| \frac{1 + c_0}{1 - c_0} \right| + j\pi \begin{cases} n + \frac{1}{2} & 0 \leq c_0 < 1 \\ n & c_0 > 1 \end{cases}$$

Eigenvalues at $-\infty$ for $c_0 = 1$ (solution $\rightarrow 0$ in finite time).

Hyperbolic PDEs: Wave Equations



In real systems with (even the slightest) damping, the ideal c_0 is not unity. The dependence on c_0 is extremely sensitive around $c_0 = 1$.

The “boundary damper” feedback is very effective in adding damping to eigenvalues but it requires actuation on the free end $x = 0$, which is seldom feasible.

Hyperbolic PDEs: Wave Equations

Backstepping: Actuation at the “Base”

Suppose we apply the “boundary damper” feedback using an active actuator at the base, while keeping the other end of the string/cable free:

$$\begin{aligned}u_{tt} &= u_{xx} \\u_x(0) &= 0 \\u_x(1) &= -c_1 u_t(1), \text{ where } c_1 > 0.\end{aligned}$$

(The sign of the gain must change to accommodate the switch from one boundary to the other, which is equivalent to the reversal of the direction of the x axis.)

Due to the Neumann BC the system has one eigenvalue at the origin $\sigma = 0$.

As a result the system has any arbitrary constant $u(x) = \text{const.}$ as an equilibrium profile.

To deal with this multitude of arbitrary equilibria a more sophisticated (backstepping) controller is needed at $x = 1$ if the boundary condition at $x = 0$ is to remain free.

Hyperbolic PDEs: Wave Equations

Target system for the backstepping controller:

$$\begin{aligned}w_{tt} &= w_{xx} \\w_x(0) &= c_0 w(0) \\w_x(1) &= -c_1 w_t(1), \text{ where } c_1 > 0.\end{aligned}$$

The BC $w_x(0) = c_0 w(0)$ doesn't use ∂_t , i.e., it is not of "damping" type but of "Robin" type.

The idea with the BC $w_x(0) = c_0 w(0)$ is to use large c_0 to make it behave like $w(0) \approx 0$.

Lyapunov function for target system:

$$V = \frac{1}{2} \left(\|w_x\|^2 + \|w_t\|^2 + c_0 w^2(0) \right) + \delta \int_0^1 (1+x) w_x(x) w_t(x) dx$$

Positive definiteness: With Poincare's and Young's inequalities, one can show that for sufficiently small δ , $\exists m_1, m_2 > 0$ s.t.

$$m_1 U \leq V \leq m_2 U, \text{ where } U = \|w_x\|^2 + \|w_t\|^2 + w^2(0)$$

Hyperbolic PDEs: Wave Equations

$$\begin{aligned}\dot{V} &= \int_0^1 w_x w_{tx} dx + \int_0^1 w_t w_{tt} dx + c_0 w(0) w_t(0) \\ &\quad + \delta \int_0^1 (1+x) (w_{xt} w_t + w_x w_{xx}) dx\end{aligned}$$

substituting target system

$$\begin{aligned}&= \int_0^1 w_x w_{tx} dx + \int_0^1 w_t w_{xx} dx + w_x(0) w_t(0) \\ &\quad + \delta \int_0^1 (1+x) (w_{xt} w_t + w_x w_{xx}) dx\end{aligned}$$

integration by parts

$$\begin{aligned}&= \int_0^1 w_x w_{tx} dx + w_t w_x \Big|_0^1 - \int_0^1 w_t w_{xt} dx + w_x(0) w_t(0)\end{aligned}$$

$$+ \delta \int_0^1 (1+x) (w_{xt} w_t + w_x w_{xx}) dx$$

canceling terms

$$\begin{aligned}&= \delta \left(\int_0^1 w_{xt} w_t dx + \int_0^1 w_x w_{xx} dx + \int_0^1 \cancel{x} w_{xt} w_t dx + \int_0^1 \cancel{x} w_x w_{xx} dx \right) \\ &\quad + w_t(1) w_x(1)\end{aligned}$$

Hyperbolic PDEs: Wave Equations

Notice that $w_{xt}w_t dx = \frac{d}{dx} \frac{w_t^2}{2}$ and $w_x w_{xx} dx = \frac{d}{dx} \frac{w_x^2}{2}$ and use integration by parts on the latter two integrals involving an extra x term:

$$\begin{aligned}\dot{V} &= w_t(1)w_x(1) + \frac{\delta}{2} \left[(1+x)(w_x^2 + w_t^2) \right] \Big|_0^1 - \frac{\delta}{2} \left[\|w_x\|^2 + \|w_t\|^2 \right] \\ &= -c_1 w_t^2 + \delta(w_t^2(1) + w_x^2(1)) - \frac{\delta}{2} \left[w_x^2(0) + w_t^2(0) \right] - \frac{\delta}{2} \left[\|w_x\|^2 + \|w_t\|^2 \right]\end{aligned}$$

$$\dot{V} = - \left(c_1 - \delta(1 + c_1^2) \right) w_t^2(1) - \frac{\delta}{2} \left(w_t^2(0) + c_0^2 w^2(0) \right) - \frac{\delta}{2} \left[\|w_x\|^2 + \|w_t\|^2 \right]$$

which is negative definite for $\delta < \frac{c_1}{1+c_1^2}$. One can further show that

$$U(t) \leq M e^{-t/M} U(0)$$

for some possibly large M .

This exponential stability result **legitimizes our “target system.”**

Hyperbolic PDEs: Wave Equations

Backstepping Design. The transformation

$$w(x) = u(x) + c_0 \int_0^x u(y) dy$$

and the boundary controller

$$u_x(1) = -c_1 u_t(1) - c_0 u(1) - c_1 c_0 \int_0^1 u_t(y) dy$$

transform $u_{tt} = u_{xx}$, $u_x(0) = 0$ into $w_{tt} = w_{xx}$, $w_x(0) = c_0 w(0)$, $w_x(1) = -c_1 w_t(1)$.

Homework: Prove this result.

So, $k(x, y) = c_0$!

Gain selection guideline: c_0 large and c_1 around 1.

Term-by-term discussion: $-c_1 u_t(1) - c_0 u(1)$ is PD control; $-c_1 c_0 \int_0^1 u_t(y) dy$ is a spatially averaged velocity and is a backstepping “damping” term.

Dirichlet implementation:

$$u(1) = -\frac{1}{c_1 s + c_0} [u_x(1)] - \frac{s}{c_1 s + c_0} \left[\int_0^1 u(y) dy \right]$$

First-Order Hyperbolic PDEs and Delay Equations

First Order Hyperbolic PDEs

Traffic flow, chemical reactors, heat exchangers, delays.

The general first order hyperbolic PDE tractable by backstepping:

$$\begin{aligned} u_t &= u_x + g(x)u(0) + \int_0^x f(x,y)u(y)dy \\ u(1) &= \text{control.} \end{aligned}$$

Only one spatial derivative \rightarrow only one boundary condition.

For g or f positive and large \rightarrow open-loop unstable.

Transformation and boundary controller

$$\begin{aligned} w(x) &= u(x) - \int_0^x k(x,y)u(y)dy \\ u(1) &= \int_0^1 k(1,y)u(y)dy. \end{aligned}$$

First-Order Hyperbolic PDEs and Delay Equations

Target system

$$\begin{aligned} w_t &= w_x \\ w(1) &= 0. \end{aligned}$$

Solution

$$w(x, t) = \begin{cases} w_0(t+x) & 0 \leq t < 1 \\ 0 & t \geq 1, \end{cases}$$

where $w_0(x)$ is the initial condition. Pure delay—converges to zero in finite time.

Kernel PDE (well posed):

$$\begin{aligned} k_{\textcolor{red}{x}} + k_{\textcolor{blue}{y}} &= \int_y^x k(x, \xi) f(\xi, y) d\xi - f(x, y) \\ k(x, 0) &= \int_0^x k(x, y) g(y) dy - g(x). \end{aligned}$$

First-Order Hyperbolic PDEs and Delay Equations

Example 1:

$$u_t = u_x + ge^{bx}u(0), \quad (1)$$

where g and b are constants. In this case, the kernel equation becomes

$$k_x + k_y = 0, \quad (2)$$

which has a general solution $k(x, y) = \phi(x - y)$. If we plug this solution into the BC equation, we get the integral equation

$$\phi(x) = \int_0^x ge^{by} \phi(x - y) dy - ge^{bx}. \quad (3)$$

The solution to this equation can be obtained by applying Laplace Transform in x :

$$\phi(s) = -\frac{g}{s - b - g}, \quad (4)$$

and after taking the inverse Laplace transform, $\phi(x) = -ge^{(b+g)x}$. Therefore, the solution to the kernel PDE is $k(x, y) = -ge^{(b+g)(x-y)}$ and the controller given by

$$u(1) = \int_0^1 k(1, y)u(y) dy. \quad (5)$$

First-Order Hyperbolic PDEs and Delay Equations

Example 2:

$$u_t = u_x + \int_0^x f e^{b(x-y)} u(y) dy, \quad (6)$$

where f and b are constants. In this case, the kernel equations become

$$k_x + k_y = \int_y^x k(x, \xi) f e^{b(\xi-y)} d\xi - f e^{b(x-y)}, \quad (7)$$

$$k(x, 0) = 0. \quad (8)$$

After we differentiate (7) with respect to y , the integral term is eliminated:

$$k_{xy} + k_{yy} = -fk - bk_x - bk_y. \quad (9)$$

Since we now increased the order of the equation, we need an extra boundary condition. We get it by setting $y = x$ in (7):

$$\frac{d}{dx} k(x, x) = k_x(x, x) + k_y(x, x) = -f, \quad (10)$$

which, after integration, becomes $k(x, x) = -fx$.

First-Order Hyperbolic PDEs and Delay Equations

Introducing the change of variables

$$k(x, y) = p(z, y) e^{b(z-y)/2}, \quad z = 2x - y, \quad (11)$$

we get the following PDE for $p(z, y)$:

$$p_{zz}(z, y) - p_{yy}(z, y) = fp(z, y), \quad (12)$$

$$p(z, 0) = 0, \quad (13)$$

$$p(z, z) = -fz. \quad (14)$$

The solution is given by

$$p(z, y) = -2fy \frac{I_1(\sqrt{f(z^2 - y^2)})}{\sqrt{f(z^2 - y^2)}}, \quad (15)$$

or, in the original variables,

$$k(x, y) = -fe^{b(x-y)}y \frac{I_1(2\sqrt{fx(x-y)})}{\sqrt{fx(x-y)}}, \quad (16)$$

and the controller given by

$$u(1) = \int_0^1 k(1, y)u(y)dy. \quad (17)$$

First-Order Hyperbolic PDEs and Delay Equations

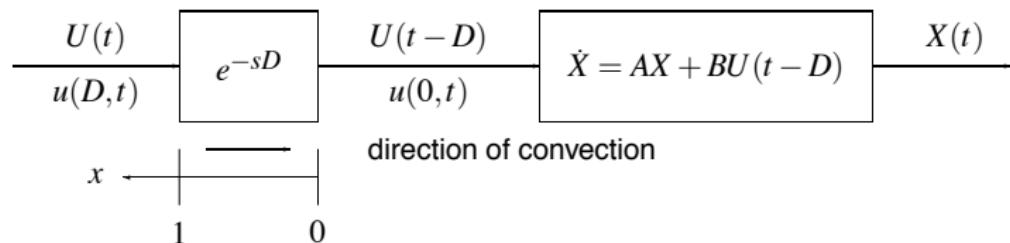
Systems with Delay

$$\dot{X} = AX + BU(t - D)$$

Assume: (A, B) controllable and matrix K found such that $A + BK$ is Hurwitz.

A hyperbolic PDE representation:

$$\begin{aligned}\dot{X} &= AX + Bu(0, t) \\ u_t &= u_x \\ u(D, t) &= U(t)\end{aligned}$$



Note that $u(x, t) = U(t + x - D)$.

First-Order Hyperbolic PDEs and Delay Equations

Consider the backstepping transformation

$$w(x) = u(x) - \int_0^x q(x, y)u(y)dy - \gamma(x)^T X$$

and the target system

$$\begin{aligned}\dot{X} &= (A + BK)X + Bw(0) \\ w_t &= w_x \\ w(D) &= 0.\end{aligned}$$

Since w becomes zero in finite time, the w -system is exponentially stable.

As usual, let us calculate the time and spatial derivatives of the transformation:

$$\begin{aligned}w_x &= u_x - q(x, x)u(x) - \int_0^x q_x(x, y)u(y)dy - \gamma'(x)^T X \\ w_t &= u_t - \int_0^x q(x, y)u_t(y)dy - \gamma(x)^T [AX + Bu(0)]\end{aligned}$$

First-Order Hyperbolic PDEs and Delay Equations

We get three conditions:

$$\begin{aligned} q_x + q_y &= 0 \\ q(x, 0) &= \gamma(x)^T B \\ \gamma' &= A^T \gamma \end{aligned}$$

The first two conditions form a familiar first order hyperbolic PDE and the third one is a simple ODE.

To find the initial condition for the ODE, we set $x = 0$ in $w(x)$, which gives $w(0) = u(0) - \gamma(0)^T X$, and hence

$$\dot{X} = AX + Bu(0) + B(K - \gamma(0)^T)X.$$

We thus get $\gamma(0) = K^T$.

First-Order Hyperbolic PDEs and Delay Equations

Therefore the ODE is

$$\begin{aligned}\gamma' &= A^T \gamma \\ \gamma(0) &= K^T\end{aligned}$$

The solution is

$$\gamma(x)^T = K e^{A x}$$

The q -PDE is

$$\begin{aligned}q_x + q_y &= 0 \\ q(x, 0) &= \gamma(x)^T B\end{aligned}$$

The solution is given explicitly:

$$q(x, y) = K e^{A(x-y)} B$$

First-Order Hyperbolic PDEs and Delay Equations

This gives the control law:

$$u(D) = \int_0^D K e^{A(D-y)} B u(y) dy + K e^{AD} X$$

or

$$U(t) = K \left[e^{AD} X(t) + \int_{t-D}^t e^{A(t-\theta)} B U(\theta) d\theta \right]$$

Same controller as in Artstein (1982) but a better proof (complete Lyapunov function).

The equivalent of [Smith Predictor for unstable systems](#).