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Hyperbolic PDEs: Wave Equations

Wave Equation with “Free End” Damping

String/Cable of unit length:

Uy = Uy (wave equation)
ux(0) = 0 (“free” end)
u(l) = 0 (“pinned” end)

Energy/Lyapunov function

1
E = 3 (el + 1))

uy = ‘“shear” potential energy
u; = velocity kinetic energy
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Hyperbolic PDEs: Wave Equations

. 1 1
E = /()uxuxtdx+/() Utgrdx (chain rule)

1 1
/ UxUxrdx + / Ul dXx
0 0

1 1
/ Ut dx + up (%) ux(x) |(1) - / urcuxdx  (integration by parts)
0 0

1 () (¥)
0 (using BCs)

Conservation of energy: E(¢) = E(0). The system is marginally/neutrally stable. Inifinitely
many eigenvalues on the imaginary axis.

A classical method of asymptotically stabilizing the system is to add “boundary damping:”

1x(0) = cous(0).
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Hyperbolic PDEs: Wave Equations

Asymptotic stability proof by Lyapunov possible but tricky. Eigenvalue calculation easier.

First, the solution postulated as

u(x,t) = e (x).

Substituting this into the PDE gives
OZCOt ()C) _ Cth)”(x),
and using the two BCs gives

e“p(1) = 0
e%¢’(0) cpoe” §(0).

Sturm-Louiville problem for wave eqn with boundary damping:

¢//_02¢ -0
¢'(0) = coo9(0)
o(1) = o.
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Hyperbolic PDEs: Wave Equations

The solution given by

¢(x) =e*+Be™

From the BC at x = 1 we get

From the BC at x = 0 we get

¢'(0) —coo9(0) = 0
o(14¢e%*%) —cpo(1—¢*°) = 0
Q20 _ l—cp

71+C()'

Solving for o gives

1
=21
o 21]

Eigenvalues at —o for ¢y = 1 (solution — 0 in finite time).

1+co
n co>1

1
j {n+2 0<¢<1
1—c¢q
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Hyperbolic PDEs: Wave Equations

Im
Co—)l

51/2

3m/2

/2

—n/2

In real systems with (even the slightest) damping, the ideal ¢ is not unity. The dependence
on ¢ is extremely sensitive around cg = 1.

The “boundary damper” feedback is very effective in adding damping to eigenvalues but it
requires actuation on the free end x = 0, which is seldom feasible.
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Hyperbolic PDEs: Wave Equations

Backstepping: Actuation at the “Base”

Suppose we apply the “boundary damper” feedback using an active actuator at the base,
while keeping the other end of the string/cable free:

Ut = Uxx
ux(0) = 0
ux(l) = —cqu(1), wherecy >0.

(The sign of the gain must change to accommodate the switch from one boundary to the
other, which is equivalent to the reversal of the direction of the x axis.)

Due to the Neumann BC the system has one eigenvalue at the origin o = 0.
As a result the system has any arbitrary constant u(x) = const. as an equilibrium profile.

To deal with this multitude of arbitrary equilibriums a more sophisticated (backstepping)
controller is needed at x = 1 if the boundary condition at x = 0 is to remain free.
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Hyperbolic PDEs: Wave Equations

Target system for the backstepping controller:

Wi = Wxx
wx(0) = cow(0)
wy(l) = —cywi(1), wherec; >0.

The BC wy(0) = cow(0) doesn’t use 9, i.e., it is not of “damping” type but of “Robin” type.
The idea with the BC wy(0) = cow(0) is to use large ¢( to make it behave like w(0) ~ 0.

Lyapunov function for target system:

1
V= 3 (sl -+ 2+ (@) 8 (14 xwalwe )

Positive definiteness: With Poincare’s and Young’s inequalities, one can show that for
sufficiently small 0, 3 my,my > 0 s.t.

miU <V <mU, where U= |lwy|?+ |lw]?+w?0)
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Hyperbolic PDEs: Wave Equations

1 1
V = /()wxwtxdx+/() wiwgrdx + cow(0)w; (0)

1
+6/0 (14 x) (Wxrwr + wywyy )dx

substituting target system

1 1
= /0 wxwmdx-&-/0 wiwxxdx +wx(0)w;(0)

1
+6/0 (1 4x) (Wxrwr + wxwyy)dx

integration by parts

1 1
= A Wthxd-x + W[Wx|(1) — /0 w;thdx + Wx(O)Wt(O)

1
+6/ (1+x) (Wxrwr +wyxwyy)dx canceling terms
0
1 1 1 1
= 6( / wywrdx + / WixWyrdXx + / Wy wedx + / xwxwxxdx>
0 0 0 0
Fwi(1wx(1)
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Hyperbolic PDEs: Wave Equations

Notice that wywrdx = dx 2 and WxWxxdx = ngg" and use integration by parts on the latter

two integrals involving an extra x term:

Vo= () +3 [ 4003 )] 1 - 2[||wxu2+||wt||]
= e 802 (1) 3 [3(0) +w2(0)] 2 [l + ]
Vo= (er=804)) w1~ (W (0)+ E(0) =2 [IwalP+ [P

a
U(t) < Me "My (0)

for some possibly large M.

This exponential stability result legitimizes our “target system.”
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Hyperbolic PDEs: Wave Equations

Backstepping Design. The transformation

W) = ) +-co [ ulr)dy

and the boundary controller
1) = —eu(1) —equ(t) —exeo [ )y
transform us; = uyy, ux(0) = 0 into wyr = wyy, wx(0) = cow(0), wx(1) = —cywi(1).
Homework: Prove this result.
So, k(x,y) = ¢!
Gain selection guideline: ¢ large and ¢ around 1.

Term-by-term discussion: —cyu;(1) — cou(1) is PD control; —cjcg fol u(y)dy is a spatially
averaged velocity and is a backstepping “damping” term.

Dirichlet implementation:
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First-Order Hyperbolic PDEs and Delay Equations

First Order Hyperbolic PDEs
Traffic flow, chemical reactors, heat exchangers, delays.

The general first order hyperbolic PDE tractable by backstepping:

= et g(Ou(O) + [ flxy)uls)dy

u(l) = control.

Only one spatial derivative — only one boundary condition.
For g or f positive and large — open-loop unstable.

Transformation and boundary controller
"X
W) = ul = [Cke)ut)dy
1
[ k) dy.

=

=N
=

=
Il
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First-Order Hyperbolic PDEs and Delay Equations

Target system

Solution

wo(t+x) 0<r<1
w(x,t):{OO( ) £>1

where wq(x) is the initial condition. Pure delay—converges to zero in finite time.
Kernel PDE (well posed):

ktky = [ k@E)F(E)E— f(xy)

X

S— S

S

k(x,0) = k(x,y)g(y)dy —g(x).
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First-Order Hyperbolic PDEs and Delay Equations

Example 1:
uy = uy 4 ge?®u(0), (1)
where g and b are constants. In this case, the kernel equation becomes
ky +ky =0, 2)

which has a general solution k(z,y) = ¢(z — y). If we plug this solution into the
BC equation, we get the integral equation

o(x) = / " g — y)dy — g, 3)

The solution to this equation can be obtained by applying Laplace Transform in z:
g

= -, 4

o(s) = —s—p— )

and after taking the inverse Laplace transform, ¢(z) = —ge(**9)%_ Therefore, the
solution to the kernel PDE is k(xz,y) = —ge(’t9)(®=¥) and the controller given by

1
u(1) = / k(L y)u(y)dy. (5)
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First-Order Hyperbolic PDEs and Delay Equations

Example 2:
U = Uy + /Ow FPTu(y)dy, (6)
where f and b are constants. In this case, the kernel equations become
bbby = [ ke @re g - g, ™)
k(xz,0) = O.y (8)

After we differentiate (7) with respect to y, the integral term is eliminated:
kyy + kyy = —fk — bk, — bky. (9)

Since we now increased the order of the equation, we need an extra boundary
condition. We get it by setting y = = in (7):

d
%k(xax) = km(xax) + ky({L‘,:IT) = *fa (10)
which, after integration, becomes k(x,z) = — fx.
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First-Order Hyperbolic PDEs and Delay Equations

Introducing the change of variables
k(z,y) = p(z,y)e" 02 2 =22—y,
we get the following PDE for p(z,y)

pzz(zay) _pyy(zay) - fp(zay)
p(z,0) = 0,
p(z,2) —fz
The solution is given by
o IV —y?)
p(z,y) = =2fy e

or, in the original variables,

k(z,y) = —fe"

and the controller given by
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First-Order Hyperbolic PDEs and Delay Equations

Systems with Delay
X = AX+BU(t-D)
Assume: (A, B) controllable and matrix K found such that A+ BK is Hurwitz.
A hyperbolic PDE representation:
X = AX+Bu(0,1)

U = Uy
ulD,t) = U@)
U(t) U(t—D . X(t
———— ¢sD ( ) X =AX+BU(t—D) 4)»

u(D,t) u(0,1)

‘ e ‘ direction of convection

X
1 0

Note that u(x,t) = U(t +x— D).
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First-Order Hyperbolic PDEs and Delay Equations

Consider the backstepping transformation
X
W) = ()= [ aley)utr)dy v x
and the target system

X = (A+BK)X+Bw(0)
Wy = Wy
w(D) = 0.

Since w becomes zero in finite time, the w-system is exponentially stable.

As usual, let us calculate the time and spatial derivatives of the transformation:

Wx

e —g(v0)ux) - [ " gl y)u(y)dy —Y (x)TX

We = - /qu<x7y>ut(y>dy—v<x>T[Ax+Bu<o>1
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First-Order Hyperbolic PDEs and Delay Equations

We get three conditions:

qx+qy = 0
q(x,0) = y(x)'B
v = aly

The first two conditions form a familiar first order hyperbolic PDE and the third one is a
simple ODE.

To find the initial condition for the ODE, we set x = 0 in w(x), which gives w(0) = u(0) —
7(0)TX, and hence

X = AX+Bu(O)+B<K7y(O)T>X.

We thus get y(0) = K.
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First-Order Hyperbolic PDEs and Delay Equations

Therefore the ODE is

Y = aly
10) = KT
The solution is
V()" = ke
The ¢-PDE is
gx+qy = 0
q(x,0) = y(x)"B

The solution is given explicitly:

q(x,y) = Ke* VB
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First-Order Hyperboli Delay Equations

This gives the control law:

D
u(D) = /0 KeAPY)Bu(y)dy+ KeAPx
or
1
U = K{eADX(t)—I— / A9 By (0)de
t—D

Same controller as in Artstein (1982) but a better proof (complete Lyapunov function).

The equivalent of Smith Predictor for unstable systems.
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