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Motion Planning for PDEs

@ Combined control solution: Feedforward (FF) 4 Feedback (FB)
@ Trajectory generation, or motion planning — open-loop control for PDEs
@ Reference trajectory + Combined FF+FB — Trajectory stabilization

o Trajectory tracking: state reference (relevant) — output reference (important)

— Start from output reference trajectory, e.g. u(0,t) = u"(0,t)
— Generates the state trajectory u" (x,t) for all =

+ Including z =1 — control reference u"(1,t)
— Combine this FF results with FB control law

+ Stabilize the trajectory u” (x,t)

+ Force u(0,t) = u"(0,t)
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Motion Planning for PDEs

Trajectory Generation
We present the ideas through several examples.

Consider the heat equation

U = Uxy
ux(0) = 0
u(0) = system output
u(l) = system input

The objective is to follow the output trajectory

W(0,0) = 2—(t—1)>=14+2—1

The first step is to construct the full state trajectory u"(x,#) which satisfies the PDE. Then
add a feedback law that stabilizes that solution.
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Motion Planning for PDEs

We postulate the state trajectory in the form:

©

k
W)= ak(t)%.

k=0
This is a Taylor series in x with time varying coefficients a, () that will be determined from
the PDE, boundary condition, and desired trajectory.

From the desired trajectory we get

u"(0,1) = ag(t) = 142t —12.

The boundary condition gives

W (0,1) =ay(t) =0.
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Motion Planning for PDEs

Substituting u”(x,¢) into the PDE we get:

kioakaf,f - ;;:Oak(r)ﬁ
- é w0
= :Oak+2()k,

We get the recursive relationship

apo(t) = a(t)
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Motion Planning for PDEs

The recursion yields

ay = 1+2t—12 a;=0
a = 2-12t, a3 =0
ag = —2, as =0
ag = 0, a;i=0 fori>6.

This gives the reference trajectory

1
W(x,0) = 1420 +12+ (1 —1)x% - EX4’

and the input signal

23
T(1,) == 41— 12,
(1) =15+

Remark. Perfect trajectory obtained only if the initial condition of the plant agrees with the

initial condition of the trajectory, that is, u(x,0) = 1 +x2— 11—2 4,
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Motion Planning for PDEs

Example 2. Reaction-diffusion equation

U = Uypet+Au
ur(0) = 0
Desired output reference signal
u'(0,) = ™.

From the boundary condition we have

ay(t)

0,
and from the PDE

ag12(t) = ag(t) + hag(t).

These conditions give

a1 = 0

aopyn = dop—May
a = (o—A)e™
as = (0—n)%™
ax = (o—N)e"
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Motion Planning for PDEs

The state trajectory is

r - k (xtx2k
u'(x,1) = kzo(a—h) Sy
ot - (VG_M)Zk

- € 2k

k=0
R cosh(vo—Ax) a>A
N cos(Va—Ax) a<h

The reference input is

u'(1,t) = e cosh(v/a—1).

Useful formulae when calculating trajectories for sinusoidal outputs:
© a2k o 02k+1
cosh(a) = —_— sinh(a) = —_—
(@) kZO (2k)! (@) “ (2k+1)!
cosh(ja) = cos(a), sinh(ja) = jsin(a), sin(ja) = jsinh(a).
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Motion Planning for PDEs

Example 8. First order hyperbolic PDE

ur = uy+gu(0)
control
sin(wt) = Im{ej“”} =ay(t)

RN
~ TN
— o~
O =
~ O~
= =
Lo

Since this is a first order PDE, the only boundary condition is the one that is available for
control.
From the PDE we get

ay = apg—gag
= Im{(jw—g)e"‘”}

a1 = 4
a(®) = m{(jo-g(o) e}

(G
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Motion Planning for PDEs

State reference
0 . k
g (joox) Jowt
add and subtract i
(]

k=1
J
= Im{ [ L4 (1-5 ) efox| efor
Jjo Jo

— Imd Sejor | IO 8 jo(r+x)
jo Jjo

u'(x,t) = Im{

u'(x,1) = —%[cos((ut) —cos(w(t +x))] + sin(w(z +x))

Input reference

W(1,1) = %[cos(w(ﬂ— 1)) — cos(owt)] + sin(w(t +1)).
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Motion Planning for PDEs

Trajectory Tracking
Trajectory Tracking = stabilization of reference trajectory with feedback control.
Consider the previous example

plant: ur = ux+gu(0)

trajectory: ' (x,1) = Elcos(w(r+x)) — cos(wr)] + sin(w(z +x))

Stabilizing controller

1
u(lo)—u'(1,1) = /0k(l,y)[u(y,t)—u’(y,t)]dy

transformation:  w(x,r) = u(x,t)—u'(x,1) — [Fk(x,y)[u(y,t) —u" (y,1)]dy

kernel:  k(x,y) = —gesty
target system: W = Wy (unit delay with zero input)
w(l) = 0
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Motion Planning for PDEs

Stabilizing controller

1
u(t) = (L) = [ CK)ul0) =i (ue)ldy
1
u(la) = W0+ [ k(L)) = (un)ldy

1 1
(0= [k G0y [k p)ut0dy

feedforward (fcn of ¢) feedback

Fiwd = §[cos(m(z +1)) — cos(wr)] +sin(o(r + 1))

+/ ges(17Y) (i [cos(w(t +y)) — cos(wt)] + sin(w(z +x))}dy
= a[cos(w( +1)) —cos(wr)] +sin(w(t+1)) — a[cos(w(t +1)) —cos(wt)]
= sin(w(r+1))
which is u"(0,¢) = sin(wt) advanced by one time unit!

Thus, it suffices to determine the reference trajectory for the target system (rather than for
the complicated original system). This is true in general.
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Motion Planning for PDEs

Average density <Parameterization
1,5 *Repetitive simulation of PDE
\/ *Cost functional checking
R *Parameter modification
Time
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J= J:‘y(x,tf)—y*(xrdx
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August 2004.

Prof. Eugenio Schuster ME 450 - Control of PDE Systems Spring 2021 13/19



Motion Planning for PDEs
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Motion Planning for PDEs
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Feedforward (FF) Control Optimization Problem Defined

as Tradeoff Between Multiple Objectives

@ Control Synthesis: feedforward controller,

Machine Operator
> " I t.
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Feedforward (FF) Control Optimization Problem Defined

as Tradeoff Between Multiple Objectives

o Objective: Reach target plasma state at some time t;,,4 by designing
actuator waveforms subject to plasma dynamics and constraints.
— Defines nonlinear, constrained optimization problem.
o Target state: Defined in terms of ¢ profile and Sy.
— Proximity of achieved state to target formulated into cost functional (.J).
— To-be-minimized cost function is weighted sum of three objectives

T = kg Jo(q(ters)) + ksaJas (Y (targ)) + Koy Jo (B (trarg))
Target g-profile objective

4(terg)) / W) [geors(5) — 4(p tearg)]P dp

Stationarity objectlve

s (0 (terg)) = / Woaa(9) [ges (o)) dp

oU, oy
9 U, = N = loop voltage

Gss ([’7 t) = —2m
— Target Sy objective

Jon (BN (trarg)) = [BNeg — B (trarg)]”
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Solution of Feedforward (FF) Control Optimization

Problem Requires Minimization under Constraints

@ An open-loop (feedforward) control policy upg is obtained via nonlinear
optimization subject to constraints. Returns target trajectory ¥re (grF).

min J(t/)FF, ’L/.JFF, BN) } Cost Function (Optimization Objective) X m
o ,7 ®GOAL
st. Ypr = fyp(Yrr,ure), Yrr(to) = Yo }MDE

WFF = fW(WFF, ’LLFF) } Energy Balance

State

/BN (t) S IBNmax7q Z 1 }State Constraint,

MHD Stability Limit

Uge(t)

_ 2 State Constraint, Linear Function ~ __ . .e® | ]
Nelog < Ip/ma o Apere peeta,
Density Limit pproximator 5
State Constraint, —
Pet(t) = Pty } . :
Prevent H— L Transition £
o
) o e t
Input Constraint, Mt N . y P
t t t t t —+—
UFF (t) € u }Saturation / Rate Limit to 4 o) t % te

UFF (t) = UpF (a) }Linear Function

Approximator
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Solution of Feedforward (FF) Control Optimization

Problem Requires Minimization under Constraints

o COTSIM enables systematic model-based scenario planning based on

nonlinear constrained optimization with arbitrary cost function.
Input Parameterization

1FF COTSIM ™\
T 14
S| LinearFunction et = =
Approximator a5 ! FF e
4

uge(t)

Control

A ; S 5 ‘ nfF L J
Upp (t) = upp(@) / I j

Cost Function ‘th‘"'ﬁ Near. Lear
J = KoJq (@ Qear) + Kglp(Bu Brgy JKissJss (1)
@) = [ W) a1 @) — 400, eV
AR ﬁN(cma]Z

@)= [ ss(p)[dtdp] dp

o FF Design (offline): Arbitrary model complexity (COTSIM—TRANSP)
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Optimizer

min /
a
subject to: dynamics
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	Feedforward Control Design for Model-based Scenario Planning

