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Motion Planning for PDEs

Combined control solution: Feedforward (FF) + Feedback (FB)

Trajectory generation, or motion planning → open-loop control for PDEs

Reference trajectory + Combined FF+FB → Trajectory stabilization

Trajectory tracking: state reference (relevant) → output reference (important)

− Start from output reference trajectory, e.g. u(0, t) = ur(0, t)

− Generates the state trajectory ur(x, t) for all x

+ Including x = 1 → control reference ur(1, t)

− Combine this FF results with FB control law

+ Stabilize the trajectory ur(x, t)

+ Force u(0, t) = ur(0, t)
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Motion Planning for PDEs

Trajectory Generation

We present the ideas through several examples.

Consider the heat equation

ut = uxx
ux(0) = 0
u(0) = system output
u(1) = system input

The objective is to follow the output trajectory

ur(0, t) = 2− (t−1)2 = 1+2t− t2

The first step is to construct the full state trajectory ur(x, t) which satisfies the PDE. Then
add a feedback law that stabilizes that solution.
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Motion Planning for PDEs

We postulate the state trajectory in the form:

ur(x, t) =
!

"
k=0

ak(t)
xk

k!
.

This is a Taylor series in x with time varying coefficients ak(t) that will be determined from
the PDE, boundary condition, and desired trajectory.

From the desired trajectory we get

ur(0, t) = a0(t) = 1+2t− t2.

The boundary condition gives

urx(0, t) = a1(t) = 0 .
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Motion Planning for PDEs

Substituting ur(x, t) into the PDE we get:

!

"
k=0

ȧk(t)
xk

k!
=

#2

#x2
!

"
k=0

ak(t)
xk

k!

=
!

"
k=2

ak(t)
k(k−1)xk−2

k!

=
!

"
k=2

ak(t)
xk−2

(k−2)!

=
!

"
k=0

ak+2(t)
xk

k!
.

We get the recursive relationship

ak+2(t) = ȧk(t)
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Motion Planning for PDEs

The recursion yields

a0 = 1+2t− t2, a1 = 0
a2 = 2−2t, a3 = 0
a4 = −2, a5 = 0
a6 = 0, ai = 0 for i> 6.

This gives the reference trajectory

ur(x, t) = 1+2t+ t2+(1− t)x2− 1
12
x4,

and the input signal

ur(1, t) =
23
12

+ t− t2.

Remark. Perfect trajectory obtained only if the initial condition of the plant agrees with the
initial condition of the trajectory, that is, u(x,0) = 1+ x2− 1

12x
4.
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Motion Planning for PDEs

Example 2. Reaction-diffusion equation

ut = uxx+!u

ux(0) = 0

Desired output reference signal

u
r(0, t) = e"t .

From the boundary condition we have

a1(t) = 0,

and from the PDE

ak+2(t) = ȧk(t)+!ak(t).

These conditions give

a2k+1 = 0

a2k+2 = ȧ2k−!a2k

a2 = ("−!)e"t

a4 = ("−!)2e"t

a2k = ("−!)ke"t
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Motion Planning for PDEs

The state trajectory is

ur(x, t) =
!

"
k=0

($−%)ke$t
x2k

2k!

= e$t
!

"
k=0

(
√
$−%x)2k

2k!

= e$t
{
cosh(

√
$−%x) $≥ %

cos(
√
$−%x) $< %

The reference input is

ur(1, t) = e$t cosh(
√
$−%) .

Useful formulae when calculating trajectories for sinusoidal outputs:

cosh(a) =
!

"
k=0

a2k

(2k)!
, sinh(a) =

!

"
k=0

a2k+1

(2k+1)!
cosh( ja) = cos(a), sinh( ja) = j sin(a), sin( ja) = j sinh(a).
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Motion Planning for PDEs

Example 8. First order hyperbolic PDE

ut = ux+gu(0)
ur(1, t) = control
ur(0, t) = sin(&t) = Im

{
e j&t

}
= a0(t)

Since this is a first order PDE, the only boundary condition is the one that is available for
control.

From the PDE we get

a1 = ȧ0−ga0
= Im

{
( j&−g)e j&t

}

ai+1 = ȧi
ak(t) = Im

{
( j&−g)( j&)k−1e j&t

}

= Im
{(

1− g
j&

)
( j&)ke j&t

}
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Motion Planning for PDEs

State reference

ur(x, t) = Im

{[
1+

(
1− g

j&

) !

"
k=1

( j&x)k

k!

]
e j&t

}

add and subtract
g
j&

= Im
{[

g
j&

+

(
1− g

j&

)
e j&x

]
e j&t

}

= Im
{
g
j&

e j&t +
j&−g
j&

e j&(t+x)
}

ur(x, t) = − g
&

[cos(&t)− cos(&(t+ x))]+ sin(&(t+ x))

Input reference

ur(1, t) =
g
&

[cos(&(t+1))− cos(&t)]+ sin(&(t+1)).
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Motion Planning for PDEs

Trajectory Tracking

Trajectory Tracking = stabilization of reference trajectory with feedback control.

Consider the previous example

plant: ut = ux+gu(0)
trajectory: ur(x, t) = g

&[cos(&(t+ x))− cos(&t)]+ sin(&(t+ x))

Stabilizing controller

u(1, t)−ur(1, t) =

Z 1

0
k(1,y)[u(y, t)−ur(y, t)]dy

transformation: w(x, t) = u(x, t)−ur(x, t)− R x
0 k(x,y)[u(y, t)−ur(y, t)]dy

kernel: k(x,y) = −geg(x−y)
target system: wt = wx (unit delay with zero input)

w(1) = 0
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Motion Planning for PDEs

Stabilizing controller

u(1, t)−ur(1, t) =
Z 1

0
k(1,y)[u(y, t)−ur(y, t)]dy

u(1, t) = ur(1, t)+
Z 1

0
k(1,y)[u(y, t)−ur(y, t)]dy

= ur(1, t)−
Z 1

0
k(1,y)ur(y, t)dy

︸ ︷︷ ︸
feedforward (fcn of t)

+

Z 1

0
k(1,y)u(y, t)dy

︸ ︷︷ ︸
feedback

Ffwd =
g
&

[cos(&(t+1))− cos(&t)]+ sin(&(t+1))

+
Z 1

0
geg(1−y)

{g
&

[cos(&(t+ y))− cos(&t)]+ sin(&(t+ x))
}
dy

=
g
&

[cos(&(t+1))− cos(&t)]+ sin(&(t+1))− g
&

[cos(&(t+1))− cos(&t)]
= sin(&(t+1))

which is ur(0, t) = sin(&t) advanced by one time unit!

Thus, it suffices to determine the reference trajectory for the target system (rather than for
the complicated original system). This is true in general.
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Motion Planning for PDEs

nn sµ ,
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•Repetitive simulation of PDE
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Motion Planning for PDEs
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Motion Planning for PDEs

J. Barton, W. Shi, E. Schuster, T.C. Luce, J.R. Ferron, M.L. Walker, D.A. Humphreys, F.
Turco, R.D. Johnson and B.G. Penaflor, “Nonlinear Physics-model-based Actuator
Trajectory Optimization for Advanced Scenario Planning in the DIII-D Tokamak,”
Proceedings of the 19th IFAC World Congress, Cape Town, South Africa, August 24-29,
2014.

C. Xu, E. Schuster, “Control of Ramp-Up Current Profile Dynamics in Tokamak Plasmas
via the Minimal-Surface Theory”, Proceedings of the 2009 IEEE Conference on Decision
and Control, Shanghai, China, December 16-18, 2009.

C. Xu, R. Arastoo and E. Schuster, “On Iterative Learning Control of Parabolic Distributed
Parameter Systems,” Proceedings of the IEEE Mediterranean Conference on Automation
and Control, Greece, June 2009.

C. Xu, J. Dalessio, Y. Ou, E. Schuster, T.C. Luce, J. Ferron, M. Walker, D. Humphreys, T.
Casper, W. Meyer, “POD-Based Optimal Control of Current Profile in Tokamak Plasmas
via Nonlinear Programming,” Proceedings of the 2008 American Control Conference,
Seattle, Washington, June 11-13, 2008.

Y. Ou, C. Xu, E. Schuster, T. Luce, J. R. Ferron, M. Walker, “Extremum-Seeking
Finite-Time Optimal Control of Plasma Current Profile at the DIII-D Tokamak,” in
Proceedings of the 2007 American Control Conference, New York, New York, July 11-13,
2007.

Prof. Eugenio Schuster ME 450 - Control of PDE Systems Spring 2021 15 / 19



Feedforward (FF) Control Optimization Problem Defined
as Tradeoff Between Multiple Objectives

Control Synthesis: feedforward controller, feedback controllers, state observers.

Figure 1:

STEP 1: Design of FF

actuator trajectories to

drive plasma close to

desired target state
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Feedforward (FF) Control Optimization Problem Defined
as Tradeoff Between Multiple Objectives

Objective: Reach target plasma state at some time ttarg by designing
actuator waveforms subject to plasma dynamics and constraints.
− Defines nonlinear, constrained optimization problem.

Target state: Defined in terms of q profile and βN .
− Proximity of achieved state to target formulated into cost functional (J).
− To-be-minimized cost function is weighted sum of three objectives

J = kqJq(q(ttarg)) + kssJss(ψ̇(ttarg)) + kβN JβN (βN (ttarg))

− Target q-profile objective

Jq(q(ttarg)) =

∫ 1

0

Wq(ρ̂) [qtarg(ρ̂)− q(ρ̂, ttarg)]
2 dρ̂

− Stationarity objective

Jss(ψ̇(ttarg)) =

∫ 1

0

Wss(ρ̂) [gss(ρ̂, ttarg)]
2 dρ̂

gss(ρ̂, t) = −2π
∂Up
∂ρ̂

Up =
∂ψ

∂t
= loop voltage

− Target βN objective

JβN (βN (ttarg)) =
[
βNtarg − βN (ttarg)

]2
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Solution of Feedforward (FF) Control Optimization
Problem Requires Minimization under Constraints

An open-loop (feedforward) control policy uFF is obtained via nonlinear
optimization subject to constraints. Returns target trajectory ψFF (qFF).

min
α

J(ψFF , ψ̇FF , βN )
}

Cost Function (Optimization Objective)

s.t. ψ̇FF = fψ(ψFF , uFF), ψFF (t0) = ψ0

}
MDE

ẆFF = fW (WFF , uFF)
}

Energy Balance

βN (t) ≤ βNmax , q ≥ 1
}

State Constraint,

MHD Stability Limit

n̄e|20 ≤ Ip/πa
2

}
State Constraint,

Density Limit

Ptot(t) ≥ Ptotmin

}
State Constraint,

Prevent H→L Transition

uFF(t) ∈ U
}

Input Constraint,

Saturation / Rate Limit

uFF(t) = uFF(α)
}
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Solution of Feedforward (FF) Control Optimization
Problem Requires Minimization under Constraints

COTSIM enables systematic model-based scenario planning based on
nonlinear constrained optimization with arbitrary cost function.
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FF Design (offline): Arbitrary model complexity (COTSIM→TRANSP)
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