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Backstepping Observer for Parabolic PDEs: Design — Discretize

Observers

Plant

Uy = Uyx+Au
ux(0)

Il
=

Possible input-output architectures:

e Anti-collocated: u(0) measured and u(1) or ux(1) actuated

e Collocated: uy(1) measured and u(1) actuated (fluid problems)

u(1) measured and ux(1) actuated (thermal problems)
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Backstepping Observer for Parabolic PDEs: Design — Discretize

Anti-Collocated Setup

Plant
Uy = Uxx+Au
ur(0) = 0
Input: u(1)  Output: u(0)

Observer
B = fe+ M+ pp(x)[u(0) —a(0)]
i1x(0) p1o[u(0) —(0)]
a(l) = u(1)

The function p(x) and the constant p( are observer gains.

Compare with finite dimension:
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Backstepping Observer for Parabolic PDEs: Design — Discretize

The error ii = u — ii satisfies

iy = fbo+Mi— pp(x)ii(0)
ix(0) = —pioi(0)
i(l) = 0

We use the transformation

i) = #(x) — [ ) ) dy

to convert the error system into the stable target system:

w, = Wxx
We(0) =
w(1) = 0
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Backstepping Observer for Parabolic PDEs: Design — Discretize

Taking a derivative with respect to time we get
X
iy = Wt—/o p(x,y)Wyy(v) dy
X
= e P00+ P 0)(0) + [ pyl )i ) dy

= e )+ )50~ Py 00— [l ) )y

Taking derivatives with respect to x we get

Gy = W o)) - /Oxpxu,y)fv(y)dy

e = e P W00 — pla ()~ i) = [ e )P0y

From the error system we get
iy — iy —Mi+p1(x)i(0) = 0

[=py(x,0)+ p1 (x)W(0) + {2%(17()6,)6)) - x] W(x)

+ /Ox[Pxx(x:Y) = pyy(x,) +Ap(x,y) W (y)dy
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Backstepping Observer for Parabolic PDEs: Design — Discretize

This gives 3 conditions:

Prax(x,Y) = pyy(x,y) = —Ap(x,y)
i ( ) — &
P )

pl(x) = Py(xao)

Boundary conditions of the error system give 2 more conditions

ix(0) = —pioi(0) = p(0,0)=pio
1) =0 = p(l,y)=0
Observer kernel PDE
prx(%,¥) = pyy(,y) = —Ap(x,y)
p(ly) = 0
A
plx,x) = —5(1—)6)

Observer gains

pi(x) = py(x,0)
P10 p(0,0)

Prof. Eugenio Schuster ME 450 - Control of PDE Systems Spring 2021



Backstepping Observer for Parabolic PDEs: Design — Discretize

Note: How do we obtain conditions from boundary conditions?

ia) = i) = [ oy 1)
Gule) = ()~ plaa)i) ~ [ pale)at)dy @
0
For z = 0, we have
u(0) = @(0) 3)
(0) = @.(0) — p(0,0)w(0) = —p10a(0) (4)
Since w,(0) = 0 and @(0) = w(0), we finally have
p(0,0) = p1o (5)
For x = 1, we have )
(1) = a1 - [ ply)at)dy (6)
0
Since @(1) = 0 and @w(1) = 0, we finally need
p(Ly) =0 ()
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Backstepping Observer for Parabolic PDEs: Design — Discretize

Note: How do we obtain modified boundary condition?

d A A
Ep(x,m) =5 = p(z,z) = 590 +C (8)

Note that p(1,y) = 0, in particular when y =1, i.e.

p(1,1)=0 (9)
Therefore,
A A
and
A
pla,w) = S 1) (11)
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Backstepping Observer for Parabolic PDEs: Design — Discretize

Change of variables

j:l—y yzl_-x ﬁ(xa.)_}):p(x’y)

Observer PDE in new variables

pix(¥,3) = Pyy(%,7) = Mp(%.3)
F(x0) = 0
PER) = —oF

The solution is

_wh(%(ﬁﬂ):_m_ 1 (VA=)

P @) )
Observer gains
Pix) = py(x,O)——i”((;:i))l( 2—x))
po = p0.0)=-5
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Backstepping Observer for Parabolic PDEs: Design — Discretize

Note: How do we obtain PDE in new variables?

dzdy

L L + Dy dr Py (12)
Doz = —ﬁgi% - ﬁgjg% = Dyy (13)
Py = ﬁi? 73}3—3 =Pz (14)
Dyy = —ﬁﬁj—i —ﬁa‘cgj—z = Dzz (15)

Then
Doz — Pyy = —AP < Dyy — Dzz = —AD <= Dzz — Dy = D (16)
Note that x =1 <= § =0. Then, p(l,y) =0 < p(z,0) =

Note that =y <= Z =§. Then p(Z,Z) = p(x,x) =
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Backstepping Observer for Parabolic PDEs: Design — Discretize

Observer Simulation
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Backstepping Observer for Parabolic PDEs: Design — Discretize

Collocated Setup

Plant

U = Upx+Au

Input: u(1)  Output: uy(1)

Observer
iy =l M4 pr(x)[ux(1) — i (1)]
iax(0) = 0
a(l) = ”(I)JFPIO["‘X(I)*&X(I)]

The error ii = u — ii satisfies

IZ; = ﬂxx+)\ﬁ-[)](x)ﬁx(l)
0
(1) = —pioix(1)

§l
—~
=)
=
Il
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Backstepping Observer for Parabolic PDEs: Design — Discretize

Using the transformation
1
ii(x) = w(x) — /x p(x,y)w(y)dy

we transform the error system into

W[ = Wxx

We(0) = 0

w(1) = 0

Observer gain PDE
Prx(%,¥) = pyy(x,y) = —Ap(x,y)

() = 5
plx,x 2x
px(0,y) = 0

The observer gains are
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Backstepping Observer for Parabolic PDEs: Design — Discretize

Using the change of variables

=1

=y )_ZZX

we get the same PDE as for the control kernel

_)'ci()_f,y) _ﬁVY(x’y) - }\,p()f,}_i)
[_)y()f,o =

=
|
=}

The solution is
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Backstepping Observer for Parabolic PDEs: Design — Discretize

Output Feedback

Plant
U = Upx+Au
u(0) = 0
Input: ux(1)  Output: u(1)
Observer
o = ﬁxx+m+lf212( m-ﬁ) u(1) —a(1)]

a(0) = 0

R A .

a(1) = (1)~ 2 fu(1) (1)
Controller
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Backstepping Observer for Parabolic PDEs: Design — Discretize

Frequency Domain Representation
Plant
U = Upy + gu(0) (17)
uz(0) = 0 (18)
Output: »(0) Input: u(1)

To derive the transfer function from u(1) to u(0), take the Laplace transform of
the plant:

su(z,s) = u’(z,8)+ gu(0,s) (19)
uw'(0,s) = 0 (20)

General solution for this ODE:
u(x,s) = Asinh(y/sz) + B cosh(v/sz) + gu((), s) (21)

and boundary condition gives

u'(0,8) =AVs=0=A=0 (22)
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Backstepping Observer for Parabolic PDEs: Design — Discretize

We have
u(z, s) = Bcosh(y/sz) + gu(O7 s) (23)
Setting z = 0 we get
B =u(0,s) (1 — %) (24)
so that
u(z, ) = u(0, 5) [g n (1 - g) cosh(\/gm)} (25)

Setting = 1 we get the open-loop transfer function
s
g+ (s — g) cosh(y/s)

There are infinitely many poles and no zeros (infinite relative degree). This can be
seen by replacing the cosh term by its Taylor series expansion.

u(0,s) =

u(l, s) (26)
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Backstepping Observer for Parabolic PDEs: Design — Discretize

Let us now design compensator. The observer is

Ay = fxe+gu(0)
a0) = 0

i) =~ [ Vasm(vE( - )ity

Applying Laplace transform we get

si(x,s) = 0" (x,s)+gu(0,s)
#0,s) = 0

1
(1.9) = = [ VEsinh(E(1-3)a:s)dy

The solution of this ODE is
ii(x,s) = (0, s) cosh(y/sx) +§ (1—cosh(v/sx)) u(0,s)

Setting x = 1 and using the boundary condition we express (0, s) as a function of u(0,s):

. _ cosh(y/s) —cosh(,/g)
#(0,5) = scosh(+/s) —gcosh(\/g)gu(Qs)
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Backstepping Observer for Parabolic PDEs: Design — Discretize

Finally, the compensator is

g . (s—g)eosh(yscosh(y3))
ul,s) = s (_1 + scosh(y/s) — gcosh(/g) ) u(0,)

g -
b 4
o S
E E -45
5 g
g & -60
=75
~ i i H -90
107" 10° 10' 10° 10° 107 10° 10' 10° 10°
W, rad/sec  , rad/sec
Approximation:
s+ 17
u(l,s) ~ 605—————u(0,s)
s4+ 255+ 320
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