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Backstepping Control of Parabolic PDEs: Design→ Discretize

Backstepping Control Design

Unstable heat equation

ut = uxx+!u
u(0) = 0
u(1) = control

Backstepping transformation

w(x) = u(x)−
Z x

0
k(x,y)u(y)dy

Target system
wt = wxx

w(0) = 0
w(1) = 0

Controller is obtained by setting x= 1 in the transformation

u(1) =
Z 1

0
k(1,y)u(y)dy
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Backstepping Control of Parabolic PDEs: Design→ Discretize

Useful knowledge from calculus: Leibniz Integral Rule

"
"z

Z b(z)

a(z)
f (x,z)dx=

Z b(z)

a(z)
fz(x,z)dx+ f (b(z),z)b′(z)− f (a(z),z)a′(z)

Notation:

kx(x,x) =
"
"x
k(x,y)|y=x

ky(x,x) =
"
"y
k(x,y)|y=x

d
dx
k(x,x) = kx(x,x)+ ky(x,x)
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Backstepping Control of Parabolic PDEs: Design→ Discretize

A particular case of the Leibnitz differentiation rule, which is more related to our
proposed Volterra integral transformation, is the following:

d

dx

∫ x

0

f(x, y)dy = f(x, x) +

∫ x

0

fx(x, y)dy
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Backstepping Control of Parabolic PDEs: Design→ Discretize

Kernel PDE Derivation

w(x) = u(x)−
Z x

0
k(x,y)u(y)dy

wx(x) = ux(x)−
Z x

0
kx(x,y)u(y)dy− k(x,x)u(x)

wxx(x) = uxx(x)−
Z x

0
kxx(x,y)u(y)dy− kx(x,x)u(x)− d

dx
(k(x,x)u(x))

Time derivative:

wt(x) = ut(x)−
Z x

0
k(x,y)ut(y)dy

= uxx(x)+!u(x)−
Z x

0
k(x,y)[uyy(y)+!u(y)]dy

= uxx(x)+!u(x)− k(x,x)ux(x)+ k(x,0)ux(0)+
Z x

0
ky(x,y)uy(y)dy

−
Z x

0
!k(x,y)u(y)dy (integration by parts)

= uxx(x)+!u(x)− k(x,x)ux(x)+ k(x,0)ux(0)+ ky(x,x)u(x)− ky(x,0)u(0)

−
Z x

0
kyy(x,y)u(y)dy−

Z x

0
!k(x,y)u(y)dy (integration by parts)
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Backstepping Control of Parabolic PDEs: Design→ Discretize

wt −wxx = uxx(x)+!u(x)− k(x,x)ux(x)+ k(x,0)ux(0)+ ky(x,x)u(x)− ky(x,0)u(0)

−
Z x

0
kyy(x,y)u(y)dy−

Z x

0
!k(x,y)u(y)dy

−
[
uxx(x)−

Z x

0
kxx(x,y)u(y)dy− kx(x,x)u(x)−u(x)

d
dx
k(x,x)− k(x,x)ux(x))

]

= u(x)
[
!+2

d
dx
k(x,x)

]
+ k(x,0)ux(0)

+

Z x

0
u(y)[kxx(x,y)− kyy(x,y)−!k(x,y)]dy

For right hand side to be zero, 3 conditions should be satisfied:

kxx(x,y)− kyy(x,y) = !k(x,y)
k(x,0) = 0

!+2
d
dx
k(x,x) = 0

Are these 3 conditions compatible? In other words, is this PDE well posed?
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Backstepping Control of Parabolic PDEs: Design→ Discretize

Control kernel PDE

kxx(x,y)− kyy(x,y) = !k(x,y)
k(x,0) = 0

k(x,x) = −!x
2

Domain
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Backstepping Control of Parabolic PDEs: Design→ Discretize

Converting Kernel PDE to Integral Equation

Introduce the change of variables

# = x+ y
$ = x− y

k(x,y) = G(#,$)

Then we have

kx = G#+G$
kxx = G##+2G#$+G$$
ky = G#−G$
kyy = G##−2G#$+G$$

The kernel PDE in new variables is

4G#$(#,$) = !G(#,$)

G(#,#) = 0

G(#,0) = −!#
4
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Backstepping Control of Parabolic PDEs: Design→ Discretize

Integrate 4G#$ = !G with respect to $ from 0 to $:

G#(#,$) = G#(#,0)+

Z $

0

!
4
G(#,s)ds

Integrate the result with respect to # from $ to # and use boundary conditions to get

G(#,$) = −!
4
(#−$)+

!
4

Z #

$

Z $

0
G(%,s)dsd%

How to solve this integral equation?
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Backstepping Control of Parabolic PDEs: Design→ Discretize

Method of Successive Approximations
Very simple idea: start with a guess, compute the right hand side of the
equation, use the solution as the next guess and repeat. The result will
converge to the solution of the integral equation.
Let us start with initial guess

G0(ξ, η) = 0 (1)

and define the recursive formula as

Gn+1(ξ, η) = −λ
4

(ξ − η) +
λ

4

∫ ξ

η

∫ η

0

Gn(τ, s)dsdτ (2)

If this converges, we can write the solution G(ξ, η) as

G(ξ, η) = lim
n→∞

Gn(ξ, η)
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Backstepping Control of Parabolic PDEs: Design→ Discretize

Let us denote the difference between two consecutive terms as

∆Gn+1(ξ, η) = Gn+1(ξ, η)−Gn(ξ, η) (3)

Then,

∆Gn+1(ξ, η) =
λ

4

∫ ξ

η

∫ η

0

∆Gn(τ, s)dsdτ (4)

And we can alternatively write

G(ξ, η) = lim
n→∞

Gn(ξ, η) =

∞∑

n=0

∆Gn+1(ξ, η) (recall that G0(ξ, η) = 0)

Note from (1) and (3) that

∆G1(ξ, η) = G1(ξ, η) (5)

Moreover, from (2)

∆G1(ξ, η) = G1(ξ, η) = −λ
4

(ξ − η) (6)
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Backstepping Control of Parabolic PDEs: Design→ Discretize

Now, from (4) we can write

∆G2(ξ, η) =
λ

4

∫ ξ

η

∫ η

0

∆G1(τ, s)dsdτ =
λ

4

∫ ξ

η

∫ η

0

(
−λ

4
(τ − s)

)
dsdτ

Then,

∆G2(ξ, η) =

(
λ

4

)2 ∫ ξ

η

∫ η

0

(s− τ)dsdτ

=

(
λ

4

)2 ∫ ξ

η

1

2
(s− τ)2|η0dτ

=

(
λ

4

)2 ∫ ξ

η

1

2

[
(η − τ)2 − τ2

]
dτ

=

(
λ

4

)2
1

2

1

3

[
(τ − η)3 − τ3

]
|ξη

=

(
λ

4

)2
1

2

1

3

[
(ξ − η)3 − (ξ3 − η3)

]
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Backstepping Control of Parabolic PDEs: Design→ Discretize

Noting that
(ξ − η)3 = ξ3 − 3ηξ2 + 3η2ξ − η3

Then,
(ξ − η)3 − (ξ3 − η3) = −3ηξ2 + 3η2ξ = −3ηξ(ξ − η)

And finally,

∆G2(ξ, η) = −
(
λ

4

)2
1

2
ηξ(ξ − η)

By repeating this process it is possible to observe a pattern that leads to

∆Gn+1(ξ, η) = −
(
λ

4

)n+1
(ξ − η)ξnηn

n!(n+ 1)!
(7)

and we can write

G(ξ, η) =

∞∑

n=0

∆Gn+1(ξ, η) = −
∞∑

n=0

(ξ − η)ξnηn

n!(n+ 1)!

(
λ

4

)n+1

(8)
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Backstepping Control of Parabolic PDEs: Design→ Discretize

The solution to the integral equation is

G(#,$) = lim
n→&

Gn(#,$)

= −
&

'
n=0

[Gn+1(#,$)−Gn(#,$)]

= −
&

'
n=0

(#−$)#n$n

n!(n+1)!

(
!
4

)n+1

This series can be summed up:

G(#,$) = −!
2
(#−$)

I1
(√

!#$
)

√
!#$

or in the original variables

k(x,y) = −!y
I1

(√
!(x2− y2)

)

√
!(x2− y2)
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Backstepping Control of Parabolic PDEs: Design→ Discretize

Control Gain

k1(y)

y

λ = 10

λ = 15

λ = 20

λ = 25
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-30
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Backstepping Control of Parabolic PDEs: Design→ Discretize

Bessel Functions Jn and In

The function y(x) = Jn(x) is a solution to the following ODE

x2y′′xx+ xy′x+(x2−n2)y= 0

Series representation

Jn(x) =
&

'
m=0

(−1)m(x/2)n+2m

m!(m+n)!

Other properties

2nJn(x) = x(Jn−1(x)+ Jn+1(x))

Differentiation
d
dx
Jn(x) =

1
2
(Jn−1(x)− Jn+1(x))

d
dx

(xnJn(x)) = xnJn−1
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Backstepping Control of Parabolic PDEs: Design→ Discretize

Asymptotic properties

Jn(x) ≈ 1
n!

(x
2

)n
, x→ 0

Jn(x) ≈
√
2
(x
cos

(
x− (n

2
− (
4

)
, x→ &

0 2 4 6 8 10
−0.5

0

0.5

1
J0(x)

J1(x)
J2(x) J3(x)

x
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Backstepping Control of Parabolic PDEs: Design→ Discretize

The function y(x) = In(x) is a solution to the following ODE

x2y′′xx+ xy′x− (x2+n2)y= 0

Series representation

In(x) =
&

'
m=0

(x/2)n+2m

m!(m+n)!

Relationship with Jn(x)

In(x) = i−nJn(ix), In(ix) = inJn(x)

Other properties

2nIn(x) = x(In−1(x)− In+1(x))

Differentiation
d
dx
In(x) =

1
2
(In−1(x)+ In+1(x))

d
dx

(xnIn(x)) = xnIn−1
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Backstepping Control of Parabolic PDEs: Design→ Discretize

Asymptotic properties

In(x) ≈ 1
n!

(x
2

)n
, x→ 0

In(x) ≈ ex√
2(x

, x→ &

0 1 2 3 4 5
−1

0

1

2

3

4

5

6

x

I0 I1 I2 I3

x
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Backstepping Control of Parabolic PDEs: Design→ Discretize

Inverse Transformation

Remember the transformation

w(x) = u(x)−
Z x

0
k(x,y)u(y)dy

We found k(x,y) and w-system is exp. stable. Does this imply that u is exp. stable?

Depends on the properties of k(x,y). Since our kernel k(x,y) is twice continuously differ-
entiable, it turns out that this is enough for inverse transformation to exist.

Let us find the inverse transformation

u(x) = w(x)+
Z x

0
l(x,y)w(y)dy

It can be shown that l(x,y) satisfies the following PDE

lxx(x,y)− lyy(x,y) = −!l(x,y)
l(x,0) = 0 ⇒ l(!) = −k(−!)!
l(x,x) = −!x

2
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Backstepping Control of Parabolic PDEs: Design→ Discretize

We have

l(x,y) = (−!)y
I1

(√
(−!)(x2− y2)

)

√
−!(x2− y2)

= −!y
I1

(
j
√
!(x2− y2)

)

j
√
!(x2− y2)

= −!y
J1

(√
!(x2− y2)

)

√
!(x2− y2)

Therefore the inverse transformation is

u(x) = w(x)−
Z x

0
!y
J1

(√
!(x2− y2)

)

√
!(x2− y2)

w(y)dy

Since w(x, t) → 0 as t → &, we get u(x, t) → 0 for all x ∈ [0,1] with a boundary controller

u(1) = −
Z 1

0
!y
I1

(√
!(x2− y2)

)

√
!(x2− y2)

u(y)dy
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Backstepping Control of Parabolic PDEs: Design→ Discretize

Notes: How does the PDE system for l(x, y) is obtained?

Let us first differentiate the transformation w.r.t. time, i.e.

ut(x) = wt(x) +

∫ x

0

l(x, y)wt(y)dy

= wxx(x) +

∫ x

0

l(x, y)wyy(y)dy

= wxx(x) + l(x, y)wx(y)|x0 −
∫ x

0

ly(x, y)wy(y)dy (integration by parts)

= wxx(x) + l(x, x)wx(x)− l(x, 0)wx(0)

−ly(x, y)w(y)|x0 +

∫ x

0

lyy(x, y)w(y)dy (integration by parts)

= wxx(x) + l(x, x)wx(x)− l(x, 0)wx(0)

−ly(x, x)w(x) +

∫ x

0

lyy(x, y)w(y)dy (w(0) ≡ 0)
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Backstepping Control of Parabolic PDEs: Design→ Discretize

Let us now differentiate the transformation w.r.t. space, i.e.

ux(x) = wx(x) +

∫ x

0

lx(x, y)w(y)dy + l(x, x)w(x) (Leibnitz Rule)

uxx(x) = wxx(x) +
d

dx
(l(x, x)w(x))

+

∫ x

0

lxx(x, y)w(y)dy + lx(x, x)w(x) (Leibnitz Rule)

uxx(x) = wxx(x) + l(x, x)wx(x) + w(x)
d

dx
l(x, x) + lx(x, x)w(x)

+

∫ x

0

lxx(x, y)w(y)dy

Then,
ut − uxx = λu = λw + λ

∫ x

0

l(x, y)w(y)dy

= −l(x, 0)wx(0)− 2w(x)
d

dx
l(x, x)

+

∫ x

0

(lyy(x, y)− lxx(x, y))w(y)dy
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Backstepping Control of Parabolic PDEs: Design→ Discretize

This leads to the following conditions

lyy(x, y)− lxx(x, y = λl(x, y)

l(x, 0) = 0

d

dx
l(x, x) = −λ

2
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Backstepping Control of Parabolic PDEs: Design→ Discretize
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Figure 4.3. Simulation results for reaction-diffusion plant (4.44), (4.45). Top:
open-loop response. Bottom: closed-loop response with controller (4.46) implemented.

Differentiation of the transformation (4.55) with respect to x gives (4.9) (which does not
depend on the particular plant). Differentiating (4.55) with respect to time, we get

wt(x) = ut (x) −
∫ x

0
k(x, y)ut (y) dy

= uxx(x) + λu(x) −
∫ x

0
k(x, y)[uyy(y) + λu(y)] dy

= uxx(x) + λu(x) − k(x, x)ux(x) + k(x, 0)ux(0)

+
∫ x

0
ky(x, y)uy(y)dy −

∫ x

0
λk(x, y)u(y) dy (integration by parts)

= uxx(x) + λu(x) − k(x, x)ux(x) + ky(x, x)u(x) − ky(x, 0)u(0) (4.59)

−
∫ x

0
kyy(x, y)u(y) dy −

∫ x

0
λk(x, y)u(y) dy (integration by parts).
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Figure 4.3. Simulation results for reaction-diffusion plant (4.44), (4.45). Top:
open-loop response. Bottom: closed-loop response with controller (4.46) implemented.

Differentiation of the transformation (4.55) with respect to x gives (4.9) (which does not
depend on the particular plant). Differentiating (4.55) with respect to time, we get

wt(x) = ut (x) −
∫ x

0
k(x, y)ut (y) dy

= uxx(x) + λu(x) −
∫ x

0
k(x, y)[uyy(y) + λu(y)] dy

= uxx(x) + λu(x) − k(x, x)ux(x) + k(x, 0)ux(0)

+
∫ x

0
ky(x, y)uy(y)dy −

∫ x

0
λk(x, y)u(y) dy (integration by parts)

= uxx(x) + λu(x) − k(x, x)ux(x) + ky(x, x)u(x) − ky(x, 0)u(0) (4.59)

−
∫ x

0
kyy(x, y)u(y) dy −

∫ x

0
λk(x, y)u(y) dy (integration by parts).

Figure 1: Left: Open-loop. Right: Closed-loop.
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Backstepping Control of Parabolic PDEs: Design→ Discretize

n48 main
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Figure 4.4. The control (4.46) for reaction-diffusion plant (4.44), (4.45).

Subtracting (4.9) from (4.59), we get

wt − wxx =
[
λ + 2

d

dx
k(x, x)

]
u(x) − ky(x, 0)u(0)

+
∫ x

0

(
kxx(x, y) − kyy(x, y) − λk(x, y)

)
u(y) dy . (4.60)

For the right-hand side of this equation to be zero for all u(x), the following three conditions
must be satisfied:

kxx(x, y) − kyy(x, y) − λk(x, y) = 0 , (4.61)

ky(x, 0) = 0 , (4.62)

λ + 2
d

dx
k(x, x) = 0 . (4.63)

Integrating (4.63) with respect to x gives k(x, x) = −λ/2x + k(0, 0), where k(0, 0) is
obtained using the boundary condition (4.57),

wx(0) = ux(0) + k(0, 0)u(0) = 0 ,

so that k(0, 0) = 0. The gain kernel PDE is thus

kxx(x, y) − kyy(x, y) = λk(x, y) , (4.64)

ky(x, 0) = 0 , (4.65)

k(x, x) = −λ

2
x . (4.66)

Note that this PDE is very similar to (4.15); the only difference is in the boundary condition
at y = 0. The solution to the PDE (4.64)–(4.66) is obtained through a summation of

Figure 2: Control at x = 1.

u(1) =

∫ 1

0

k(1, y)u(y)dy = −λ
∫ 1

0

y
I1

(√
λ(1− y2)

)

√
λ(1− y2)

u(y)dy (9)
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Backstepping Control of Parabolic PDEs: Design→ Discretize

Neumann Controller

Unstable heat equation with Neumann actuation

ut = uxx+!u
u(0) = 0
ux(1) = control

Exactly the same transformation as in case of Dirichlet actuation:

w(x) = u(x)+
Z x

0
!y
I1

(√
!(x2− y2)

)

√
!(x2− y2)

u(y)dy

But with a target system modified at x= 1 (easy to show that it is stable)

wt = wxx
w(0) = 0
wx(1) = 0
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Backstepping Control of Parabolic PDEs: Design→ Discretize

Notes: How do we obtain the control ux(1)?

We need to differentiate the transformation

w(x) = u(x)−
∫ x

0

k(x, y)u(y)dy

w.r.t. space, i.e.

wx(x) = ux(x)−
∫ x

0

kx(x, y)u(y)dy − k(x, x)u(x) (Leibnitz Rule)

and set x = 1 (it is clear now why the target system has been chosen with an
homogeneous Neumann boundary condition at x = 1) to obtain

ux(1) = k(1, 1)u(1) +

∫ 1

0

kx(1, y)u(y)dy

with

k(x, y) = −λy I1(
√
λ(x2 − y2))√
λ(x2 − y2)
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Backstepping Control of Parabolic PDEs: Design→ Discretize

Simply differentiate the transformation with respect to x:

w(x) = u(x)+

Z x

0
!y
I1

(√
!(x2− y2)

)

√
!(x2− y2)

u(y)dy

wx(x) = ux(x)+
!x
2
u(x)+

Z x

0
!yx

I2
(√

!(x2− y2)
)

x2− y2
u(y)dy

and evaluate at x= 1 to get Neumann controller:

ux(1) = −!
2
u(1)−

Z 1

0
!y
I2

(√
!(1− y2)

)

1− y2
u(y)dy
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Backstepping Control of Parabolic PDEs: Design→ Discretize

Notes: How do we compute kx(x, y)?

We start from

k(x, y) = −λy I1(
√
λ(x2 − y2))√
λ(x2 − y2)

and compute

kx(x, y) =−λy
[
d
dxI1(

√
λ(x2 − y2))√

λ(x2 − y2)
− 1

2
(2λx)

I1(
√
λ(x2 − y2))

(λ(x2 − y2))3/2

]

=−λy




(
1√

λ(x2−y2)
I1(
√
λ(x2 − y2)) + I2(

√
λ(x2 − y2))

)
(2λx)

2
√
λ(x2−y2)√

λ(x2 − y2)

− 1

2
(2λx)

I1(
√
λ(x2 − y2))

(λ(x2 − y2))3/2

]

=−λyxI2(
√
λ(x2 − y2))

x2 − y2
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Backstepping Control of Parabolic PDEs: Design→ Discretize

Closed Loop Simulation

ux(1)

t

x

t

u

Closed loop state Control effort
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Backstepping Control of Parabolic PDEs: Design→ Discretize

Reaction-Advection-Diffusion Systems

Plant

ut = εuxx + bux + λu (10)

u(0) = 0 (11)

u(1) = U(1) (12)

Let us define the change of variable v(x) = u(x)e
b
2εx. Then,

ut = vt(x)e−
b
2εx (13)

ux = vx(x)e−
b
2εx − b

2ε
v(x)e−

b
2εx (14)

uxx = vxx(x)e−
b
2εx − b

ε
vx(x)e−

b
2εx +

b2

4ε2
v(x)e−

b
2εx (15)

and

vt(x)e−
b
2εx =

(
εvxx(x)− bvx(x) +

b2

4ε
v(x) + bvx(x)− b2

2ε
v(x) + λv(x)

)
e−

b
2εx
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Backstepping Control of Parabolic PDEs: Design→ Discretize

The plant can be rewritten as

vt = εvxx +

(
λ− b2

4ε

)
v (16)

v(0) = 0 (17)

v(1) = u(1)e
b
2ε = control (18)

Now we can follow the procedure introduced for the original (Dirichlet) problem.

w(x) = v(x)−
∫ x

0

k(x, y)v(y)dy

Target

wt = εwxx − cw (19)

w(0) = 0 (20)

w(1) = 0 (21)

with c ≥ max
{
b2

4ε − λ, 0
}
→ decay rate closed-loop system (no effort if stable).
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Backstepping Control of Parabolic PDEs: Design→ Discretize

The gain kernel k(x, y) can be shown to satisfy

εkxx(x, y)− εkyy(x, y) =

(
λ− b2

4ε
+ c

)
k(x, y) (22)

k(x, 0) = 0 (23)

k(x, x) = − x

2ε

(
λ− b2

4ε
+ c

)
(24)

This is the same PDE system as before with λ0 = 1
ε

(
λ− b2

4ε + c
)

and solution

k(x, y) = −λ0y
I1(
√
λ0(x2 − y2))√
λ0(x2 − y2)

The controller is given by

u(1) =

∫ 1

0

e−
b
2ε (1−y)λ0y

I1(
√
λ0(1− y2))√
λ0(1− y2)

u(y)dy
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Backstepping Control of Parabolic PDEs: Design→ Discretize

Reaction-Advection-Diffusion Systems

Plant

ut = )(x)uxx+b(x)ux+!(x)u
ux(0) = −qu(0)

These equations come from thermal / fluid / chemical problems.

What each term does:

Diffusion Advection Reaction

(smoothing) (transfer) (destabilizing)
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Backstepping Control of Parabolic PDEs: Design→ Discretize

Reaction-Advection-Diffusion Systems

Plant

ut = )(x)uxx+b(x)ux+!(x)u
ux(0) = −qu(0)

Spatially varying coefficients arise for several reasons:

— linearization

— non-homogenous materials

— unusually shaped domains

Using special transformation we can eliminate b(x) and make )(x) constant.
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Backstepping Control of Parabolic PDEs: Design→ Discretize

Gauge Transformation (→ constant diffusion, zero advection)
Coordinate change:

z =
√
ε0

∫ x

0

ds√
ε(s)

, ε0 =

(∫ 1

0

ds√
ε(s)

)−2
(25)

State-variable change:

v(z) = ε−1/4(x)u(x)e
∫ x
0

b(s)
2ε(s)

ds (26)

It is possible to show that the new state variable satisfies

vt(z, t) = ε0vzz(z, t) + λ0(z)v(z, t) (27)

vz(0, t) = −q0v(0, t) (28)

where

λ0(z) = λ(x) +
ε′′(x)

4
− b′(x)

2
− 3

16

(ε′(x))2

ε(x)
+

1

2

b(x)ε′(x)

ε(x)
− 1

4

b2(x)

ε(x)
(29)

q0 = q

√
ε(0)

ε0
− b(0)

2
√
ε0ε(0)

− ε′(0)

4
√
ε0ε(0)

(30)
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Backstepping Control of Parabolic PDEs: Design→ Discretize

We use the transformation

w(x) = v(x)−
∫ x

0

k(x, y)v(y)dy (31)

to map the modified plant into the target system

wt = ε0wxx − cw (32)

wz(0) = 0 (33)

w(1) = 0) (34)

The constant c is a design parameter that determines the decay rate of the
closed-loop system. The transformation kernel is found by solving the PDE

kzz(z, y)− kyy(z, y) =
λ0(y) + c

ε0
k(z, y) (35)

ky(z, 0) = −q0k(z, 0) (36)

k(z, z) = −q0 −
1

2ε0

∫ z

0

(λ0(y) + c)dy (37)

This kernel PDE can no longer be solved in closed form, but the solution can be
computed numerically (order of magnitude faster in computation time than
solving a Riccati equation).
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Backstepping Control of Parabolic PDEs: Design→ Discretize

Since the controller for the v-system is given by

v(1) =

∫ 1

0

k(1, y)v(y)dy, (38)

using both the coordinate change and the state-variable change we can write is as

u(1) =

∫ 1

0

ε1/4(1)
√
ε0

ε3/4(y)
e−

∫ 1
y

b(s)
2ε(s)

dsk

(∫ 1

0

√
ε0
ε(s)

ds,

∫ y

0

√
ε0
ε(s)

ds

)
u(y)dy. (39)
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