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Backstepping Control of Parabolic PDEs: Design — Discretize

Backstepping Control Design

Unstable heat equation

Uy = Upx+Au
u(0) = 0
u(1) = control

Backstepping transformation
"X
w(x) = u(x) — /0 k(x,y)u(y)dy

Target system
Wy = Wxx

Controller is obtained by setting x = 1 in the transformation

)= [ K0 ut)dy
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Backstepping Control of Parabolic PDEs: Design — Discretize

Useful knowledge from calculus: Leibniz Integral Rule

a b b(2) ) )
52y S [ S0, () — S (ala), e 2

Notation:
k(ra) = k)]
x (X, X - Ix X,y y=x
J
ky(x,x) = @k(x,y)\y:x
d
ak(x,x) = kx(x7x)+ky(xvx)
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Backstepping Control of Parabolic PDEs: Design — Discretize

A particular case of the Leibnitz differentiation rule, which is more related to our
proposed Volterra integral transformation, is the following:

& | teni=sea+ [
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Backstepping Control of Parabolic PDEs: Design — Discretize

Kernel PDE Derivation

w(x)

0= [k )ut)dy
)= | " e, y)u(y)dy — K (x,x)u(x)

) = ) = [ e )y — ke 0ul) — K5 0ul)

wy(x)

Time derivative:
w0 = )= [ k) )dy
= ) +a) = [ )iy )+ ()] dy
= Uxr(x) + Mt (x) — k(x, %) ux(x) + k(x,0)ux(0) + /Oxky(x,y)uy(y)dy
/ M (x,y)u(y)dy (integration by parts)
= up(x) -I—?»u(x) k(x X) iy (x) + k(x,0)1x(0) + ky (x, x)u(x) — ky(x,0)u(0)
/ kyy(x,y)u /0 M (x,y)u(y)dy (integration by parts)
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Backstepping Control of Parabolic PDEs: Design — Discretize

wr—wxx = txe(x) +Au(x) — k(x,x)ux(x) +k(x,0)ux(0) + ky (x, X)u(x) — ky (x,0)u(0)
- /0 kyy (x,y)u(y) dy — /0 Me(x, y)u(y)dy

= i) = b))~ ) 0 1) K S
= u(x) {7\.—0—21/(()6,)()] + k(x,0)ux(0)

) n.9) = p3) = Mk )] dy

For right hand side to be zero, 3 conditions should be satisfied:
kxx(xJ) _kyy(xvy) = 7\’k('xay)
k(x,0) 0
A+ 2ik(x X) 0
dx

Are these 3 conditions compatible? In other words, is this PDE well posed?
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Backstepping Control of Parabolic PDEs: Design — Discretize

Control kernel PDE

kor(x,y) = kyy(x,y) = Ak(x,y)
k(x,0)

k(x,x) = ——

Il
=

Domain
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Backstepping Control of Parabolic PDEs: Design — Discretize

Converting Kernel PDE to Integral Equation

Introduce the change of variables

E = x+ty
= X— y
k(x,y) = G(Em)
Then we have
ky = GE +Gn
kye = GEE + 2G§n + Gy
ky = GE -Gy
kyy = GE‘% — 2GE,] + Gy

The kernel PDE in new variables is

4Gg,(Em) = AG(Em)
GEE =0

G(%-?O) = 5
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Backstepping Control of Parabolic PDEs: Design — Discretize

Integrate 4G§n = AG with respect to 1} from 0 to 1:

Ge(8m) = G(§,0) + /On %G(E,s) ds

Integrate the result with respect to & from 1 to § and use boundary conditions to get

3
G(Em) = —%(E—n) +%/ﬂ /On G(t,s)dsdt

How to solve this integral equation?
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Backstepping Control of Parabolic PDEs: Design — Discretize

Method of Successive Approximations

Very simple idea: start with a guess, compute the right hand side of the
equation, use the solution as the next guess and repeat. The result will
converge to the solution of the integral equation.

Let us start with initial guess

Go(&,m) =0 (1)

and define the recursive formula as
by A € m
Gni1(§,m) = _Z(E -n)+ Z/ / G (1, s)dsdr (2)
n 0

If this converges, we can write the solution G(&,7) as

G(&m) = Tim Gn(€,n)
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Backstepping Control of Parabolic PDEs: Design — Discretize

Let us denote the difference between two consecutive terms as

AGh41(&n) = Grya(§,m) — Gu(&,m) ®3)
Then, )
A n
AGp4+1(&m) = — AG, (T, s)dsd 4
aen =7 [ [ aGur sasir *)
And we can alternatively write
G(&m) = lim Gn( Z Gri1 (&) (recall that Go(€,m) = 0)
Note from (1) and (3) that
Moreover, from (2)
A
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Backstepping Control of Parabolic PDEs: Design — Discretize

Now, from (4) we can write

pY E A I A
AGy(&,n) = Z/n /0 AG(T,s)dsdT = Z/n /0 (—Z(T—S)> dsdr

Then,
2 p8
//(8—T)d8d7’
n 0

(s — 7)2[1dr

AGQ (57 77)

3]
o

N = N

[(77 - 7')2 - 7'2] dr

[ V)

[(r =) =] 5

Lo}
N = N =

W= Wl

N N D D Y D SN

Il
(v}
ﬁd\

—
I

)P = (& = n*)]

=
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Backstepping Control of Parabolic PDEs: Design — Discretize

Noting that
E—n)? =8 -3 +3*¢—n’
Then,
(=)= (& —n’) = =30 +3n*¢ = =3¢ (§ —n)
And finally,

AGy(&m) = —<%>2%n€(£—n)

By repeating this process it is possible to observe a pattern that leads to

n+1 _ n.n
AGn+1(§?n) = - (é> %

) 7)

and we can write

_ > B ° € —n)em™ (A n+1
G =Lacumen =L i (3) @

n=0
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Backstepping Control of Parabolic PDEs: Design — Discretize

This series can be summed up:

I (\/@)
VAEn

GEm) = —%(E -n)

or in the original variables
Iy ( A —y2)>

A2 —»?)

k(x,y) = =y
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Backstepping Control of Parabolic PDEs: Design — Discretize

Control Gain

0 0.2 0.4 y 0.6 0.8 1
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Backstepping Control of Parabolic PDEs: Design — Discretize

Bessel Functions J,, and [,

The function y(x) = J,(x) is a solution to the following ODE

A+ (P =)y =0

Series representation

S ()2

J, = e
n(x) E m!(m+n)!

m=0

Other properties

2ndp(x) = X(Jn—1(x) +Jp41(x))

Differentiation

G0 = 3@ = () (W (0) =
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Asymptotic properties

Jo(x)
Ji(x)
05} 5() J3(x)
0
05 2 4 6 8 10
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Backstepping Control of Parabolic PDEs: Design — Discretize

The function y(x) = I,(x) is a solution to the following ODE

VA0l — (@ +n7)y=0

Series representation

o (x/z)n+2m

Infx) = E m!(m+n)!

m=0

Relationship with J,(x)

Ln(x) =i "u(ix),  Iy(ix) = "Ju(x)

Other properties

2ndn(x) = x(Ip—1(x) = In1(x))

Differentiation

) =310+l (@) S R() =y
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Backstepping Control of Parabolic PDEs: Design — Discretize

Asymptotic properties

1 /x\n
In(x z—(—) x—0
n(x) nl\2/) "’
X
e
In(x) =~ X—>®
V2mx
6 hly, b &
5
4
3
2
1
0
s 1 2 3 4 5
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Backstepping Control of Parabolic PDEs: Design — Discretize

Inverse Transformation
Remember the transformation
X
W) =) = [ kCxyu(r)dy
We found k(x,y) and w-system is exp. stable. Does this imply that u is exp. stable?

Depends on the properties of k(x,y). Since our kernel k(x,y) is twice continuously differ-
entiable, it turns out that this is enough for inverse transformation to exist.

Let us find the inverse transformation

) = i) + [ 1y wi)dy

It can be shown that /(x,y) satisfies the following PDE

Lx(x,y) — lyy(xd’) —M(x,y)
[(x,0) = 0 = I(\) = —k(=\)!
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Backstepping Control of Parabolic PDEs: Design — Discretize

We have
n(Venw=)  n(whe-n)
e = —A(x?—y?) - JMEE=y?)
11( 7»()62*}’2))
~ Y e

Therefore the inverse transformation is

n(Vre-2)
W) - [y e N
Since w(x,7) — 0 as 7 — o, we get u(x,7) — 0 for all x € [0, 1] with a boundary controller
/1 I (\/ A —yz))

u(y)d
0 k(x2_y2) i
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Backstepping Control of Parabolic PDEs: Design — Discretize

Notes: How does the PDE system for {(z,y) is obtained?

Let us first differentiate the transformation w.r.t. time, i.e.

wie) = wle)+ [ "l yywny)dy

Iz, z)w, () — (m 0)w,(0)

§+/ lyy(z, y)w(y)dy (integration by parts)
0

N
<
&
<
~—
g
— —~
<
=

= Wi () + (2, 2)we (z) — Uz, 0)ws(0)

—ly(z, 2)w(z) + | lyy(z,y)wy)dy  (w(0) = 0)
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Backstepping Control of Parabolic PDEs: Design — Discretize

Let us now differentiate the transformation w.r.t. space, i.e.
ug(z) = wy(x) —|—/ Lo (z,y)w(y)dy + l(x,z)w(x) (Leibnitz Rule)

0
d

Uy (T) = wWaa(w) + dr Uz, z)w(z))

+ / Loz (z, y)w(y)dy + 1z (z, z)w(z) (Leibnitz Rule)
0
Upe () = wWep(x) + (2, 2)w, (z) + w(x)il(x,x) + I (2, z)w(x)

dx
+ / Lz (2, y)w(y)dy
0

Then, z
Ut — Ugy = AU = Aw+ )\/ Iz, y)w(y)dy
0

= —(z,0)w,(0) — 2w(x)%l(% z)

+ /Ox(lyy(xay) = lea (2, y))w(y)dy
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Backstepping Control of Parabolic PDEs: Design — Discretize

This leads to the following conditions

lyy(xay) —lex(z,y = N(2,y)
I(z,0) = 0
A
%l(az,x) = —5
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Backstepping Control of Parabolic PDEs: Design — Discretize

Figure 1: Left: Open-loop. Right: Closed-loop.
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Backstepping Control of Parabolic PDEs: Design — Discretize

Figure 2: Control at z = 1.

1 1 I (VA1 —y?)
u(t) = [ Kty = [y ( A(l_y;)“(y)dy ©)
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Backstepping Control of Parabolic PDEs: Design — Discretize

Neumann Controller

Unstable heat equation with Neumann actuation

U = Upx+Au
u0) = 0
ux(1) = control

Exactly the same transformation as in case of Dirichlet actuation:

. 11( 7»(x2*y2)>
W) =)+ | Y Ve
x°—y

But with a target system modified at x = 1 (easy to show that it is stable)

Wy = Wxx
w(0) = 0
we(l) = 0
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Backstepping Control of Parabolic PDEs: Design — Discretize

Notes: How do we obtain the control u,(1)7?

We need to differentiate the transformation
wle) = ule) = [ ko p)utu)dy
w.r.t. space, i.e.
we () = ug(z) — /Ow ky(z,y)u(y)dy — k(z, z)u(z) (Leibnitz Rule)

and set = 1 (it is clear now why the target system has been chosen with an
homogeneous Neumann boundary condition at « = 1) to obtain

ua(1) = k(1L 1)u(1) + / ke (L, y)u(y)dy

with
Li(VA@? —y?))
Az? —y?)
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Backstepping Control of Parabolic PDEs: Design — Discretize

Simply differentiate the transformation with respect to x:

. 11( 7»(x2—y2)>

wx) = ulx)+ [ My
0 M2 —3?)

. b(YME-)
wy(x) = ux(x)—&—%u(x)—i-/o )\yx(xz_yz)u(y)dy

and evaluate at x = 1 to get Neumann controller:

1 1) 7“(1 7y2)
1) = —3u(0) - [ xy()u@)dy

l—y2
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Backstepping Control of Parabolic PDEs: Design — Discretize

Notes: How do we compute k,(z,y)?

We start from

and compute

o AL =) 1 A LGAEE =)
R R T B L P

_ (Vﬁll(\/w) + I (\/A(2? — y2))> 2\/%

— )\
Y A@? —y?)

_ 1(2)\.’5) Il( >‘($2 - y2))1

2 (M= —y2))?/2
I2 A ZE2 — 2
o 2O
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Backstepping Control of Parabolic PDEs: Design — Discretize

Closed Loop Simulation

S ‘ 2 30
1y 05 1 L5 () 05 1 5 2
t t

Closed loop state Control effort
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Backstepping Control of Parabolic PDEs: Design — Discretize

Reaction-Advection-Diffusion Systems

Plant
U = €EUgy + bUuy + A (10)
u(@0) = 0 (11)
u(l) = U(1) (12)

Let us define the change of variable v(z) = u(z)e2e®. Then,

ur = wvg(x)e 26" (13)
b
Uy = vx(x)e_fbem - iv(x)e_fbfm (14)
—2x b —2x b? — 2>
Uge = Vgz(T)e 267 _ va(m)e 2T 4 Ev(az)e 2 (15)
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Backstepping Control of Parabolic PDEs: Design — Discretize

The plant can be rewritten as

Vi = €Ugp + ()\ - %) v (16)
v(0) = 0 (17)
v(l) = u(l)e% = control (18)

Now we can follow the procedure introduced for the original (Dirichlet) problem.

w(z) = v(z) - / " ke, y)uly)dy

Target
Wy = €EWgy — CW (19
w(0) = 0 (20
w(l) = 0 (21

with ¢ > max{% — A O} — decay rate closed-loop system (no effort if stable).
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Backstepping Control of Parabolic PDEs: Design — Discretize

The gain kernel k(x,y) can be shown to satisfy

2
chuo(,9) el (9) = (A= +e) biowo) (22)
k,0) = 0 (23)
2
k(x,z) = —% (/\ % + c> (24)

This is the same PDE system as before with \g = % ()\ — % + c) and solution

Li(VAo(z? — %))
Ao(2? —y?)

k(l‘, y) = _)‘Oy

The controller is given by

1 , 1 .2
U(l)Z/O 6_%(1_y)koy%uw)dy
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Backstepping Control of Parabolic PDEs: Design — Discretize

Reaction-Advection-Diffusion Systems

Plant

u = e(X)uxy+b(xX)ux+Mx)u
ux(0) = —qu(0)

These equations come from thermal / fluid / chemical problems.

What each term does:

Diffusion Advection Reaction

(smoothing) (transfer) (destabilizing)
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Backstepping Control of Parabolic PDEs: Design — Discretize

Reaction-Advection-Diffusion Systems

Plant

€ () xx + b(x)ux + Mx)u
—qu(0)

ur

ux(0)

Spatially varying coefficients arise for several reasons:
— linearization
— non-homogenous materials

— unusually shaped domains

Using special transformation we can eliminate b(x) and make ¢(x) constant.
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Backstepping Control of Parabolic PDEs: Design — Discretize

Gauge Transformation (— constant diffusion, zero advection)
Coordinate change:

o ds bods -
Z_\/a/o mv 60—<0m> (25)

State-variable change:

v(2) = e VA (2)u(x)eld 7o (26)

It is possible to show that the new state variable satisfies
ve(z,t) = eov..(2,t) + Ao(2)v(z, 1) (27)
Vz (07 t) = _qOU(Ov t) (28)

where
e'(z) V(x) 3 (€(x)? 1b)(x) 1b%(x)

Mo(2) = Aa)+ T2 T ) T2 @ e P
0 = q €0 0 _ __<l) (30)

o 2 e0e(0)  44/e0e(0)
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Backstepping Control of Parabolic PDEs: Design — Discretize

We use the transformation .
w(z) = v(z) — / k(2 y)o(y)dy (31)
0

to map the modified plant into the target system

Wy = €Wgg — CW (32)
wy(0) = 0 (33)
w(l) = 0) (34)

The constant c¢ is a design parameter that determines the decay rate of the
closed-loop system. The transformation kernel is found by solving the PDE

N ()
B0 = —aok(=0) (30
ben) = w5 [ Gowrad @)

This kernel PDE can no longer be solved in closed form, but the solution can be
computed numerically (order of magnitude faster in computation time than
solving a Riccati equation).
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Backstepping Control of Parabolic PDEs: Design — Discretize

Since the controller for the v-system is given by

/ k(1 y)v(y)dy, (38)

using both the coordinate change and the state-variable change we can write is as

= [ B [ [ [
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