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Backstepping Control of Parabolic PDEs: Discretize — Design

Let us consider the following parabolic PDE 1

oF 10| HoF
ot ror

Dar] + P, (1)

with arbitrary boundary conditions

oE
ET‘:O = 0, (2)
oE
Wr:a = kgE(a). 3)

Note that £ = E(r,t), D = D(E(r,t)) and P = P(r).

IThe paper on “Control of a non-linear PDE system arising from non-burning tokamak
plasma transport dynamics” by Schuster et al. considers a rather more complex system where
the energy equation is combined with the density equation.
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Backstepping Control of Parabolic PDEs: Discretize — Design

We write E(r,t) = E(r) + E(r,t), where E(r) is the equilibrium profile which
satisfies the equilibrium equation

10 [ ~0E] 4
0 = T or [TDE:| + P, (4)
with boundary conditions
OFE
E o - 07 (5)
oF _
ar . = kgE(a), (6)

Note that the equilibrium profile will depend not only on the boundary conditions
but also on the interior source P.

It is important to note that in this approach we con-
sider only boundary actuation. Therefore, P = P is
used only for the definition of the equilibrium profile.
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Backstepping Control of Parabolic PDEs: Discretize — Design

The dynamics of the deviation variables E(r, t) is given by

OF 10 8(E—|—E’)

o " ;ﬂm—ar or
_vo [ eE] 1o 08,
T ror or r or " or

We take into account that

and we define

+ —D— + P, @)

0 OFE OF
or
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Backstepping Control of Parabolic PDEs: Discretize — Design

In this way we can rewrite the equations for the deviation variables as

OF d

OE| 1 _0FE
a = o |Par | il T ®)
with boundary conditions
oF
o = 0, 9)
r=0
OF _ .
o ) = kgE(a)+ AE,, (10)

The objective is to stabilize E(r,t), making it converge to
zero, by using AFE,.(t) as actuation at the edge of the domain.
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Backstepping Control of Parabolic PDEs: Discretize — Design

@ We dicretize the original set of PDE's in space using a finite difference
method which gives a high order set of coupled nonlinear ordinary differential
equations.

@ We apply backstepping design to obtain a discretized coordinate
transformation that transforms the original system into a properly chosen
target system that is asymptotically stable in [2-norm. To achieve such
stability for the target system, convenient boundary conditions are chosen.

@ We use the property that the discretized coordinate transformation is
invertible for an arbitrary (finite) grid choice to conclude that the discretized
version of the original system is asymptotically stable and we obtain a
nonlinear feedback boundary control law in the original set of coordinates.
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Backstepping Control of Parabolic PDEs: Discretize — Design

| NONLINEAR PDE MODEL |

l Discretization in Space

Boundary Control —— | NONLINEAR ODE MODEL

T-1 Tl Backstepping Transformation

Stabilizing BC <—— TARGET SYSTEM

Figure 1: Control Approach
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Backstepping Control of Parabolic PDEs: Discretize — Design

@ The idea is to design a controller using only a small number of steps of
backstepping, or equivalently using only a small number of state
measurements.

@ The measurements are taken from the interior of the domain and the
actuation is applied at the boundary of the domain.

@ To discretize the problem, let us start by defining h = % where N is an
integer, and use the notation x;(t) = z(ih,t), i =0,1,...,N.
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Backstepping Control of Parabolic PDEs: Discretize — Design

Discretization Method:

10 ox 0 ox 1 _0x
v or [’“Da] = o [DE] P
First-order derivative: L8 .
£ Tit1 — X4
D = —p,oe
r o Or|, ih h
Second-order derivative:
Oz T
87’ i+l a h
Oz R T
87’ i1 h
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Backstepping Control of Parabolic PDEs: Discretize — Design

ox oz
9 [ oz Diyy Grlivs = Dicy 5iliy
or or h
D () -y ()
n h
B Diy1wiy1 — (Dif% + Di+%) i+ D 1w
- =
Diy1xipn = 2Dz + Dy _1i
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Backstepping Control of Parabolic PDEs: Discretize — Design

We write the discretized version of equation (8) as

D1 Eip —2DE; + D,

2 4 lEi—l 1 Ei+1 — EZ
E;= - = . - + o Di——— + i, (11)
Diy1Eiy1 —2DiEi + D; 1 Ei N lD- Ei1 — E; LB

9i= 2 ih h
for i =1,...,N — 1 and the discretized version of the boundary condition
equations (9)-(10) as

E,—E
L0 -, (12)

kpEn + AE,, (13)

where
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Backstepping Control of Parabolic PDEs: Discretize — Design

o Note that the system (11)-(13) is a general Strict Feedback System, i.e., it
can be written as

T = Yi(@)rigr +0i(Ti) i=1,...,n—1

Tn = Up(x)u+ dn(x)
where 7; = [z1,...,2;]T (%, = x), ¢:(Z;) are smooth and ¢;(0) = 0, and
¥i(Z;) #0 for i = 1,...,n over the domain of interest.

@ The choice of a backward approximation for the derivatives of D at point 7 is
key to our approach. In this way it is possible to write D, it 1 as functions of
the state variables at points ¢ and ¢ — 1. Otherwise, the system would NOT
be strict feedback.

We already studied how to design a backstepping controller for
this type of system. Do you remember?
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Backstepping Control of Parabolic PDEs: Discretize — Design

Strict Feedback Systems:

T = mip+¢i(T) i=1,...,n—1
Tn = u+ ¢p(x)
where Z; = [z1,...,2;]T, ¢:(%;) are smooth and ¢;(0) = 0.

We have a local triangular structure:

1 = o+ ¢i(z1)
&y = w3+ da(x1,22)
.’I.':n = u+¢n<mlax2;-~-7xn)

Linear part: Brunovsky canonical form = feedback linearizable
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Backstepping Control of Parabolic PDEs: Discretize — Design

The control law

zi = @ —oi—1(Ti—1) CVOZO
i(®;) = —zi1— szz—@-l-z $J+1+¢J) ¢ >0
U = ap

guarantees global asymptotic stability of x = 0.
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Backstepping Control of Parabolic PDEs: Discretize — Design

@ We consider now the asymptotically stable (in L? norm) target system

oF 10 oF -
ot ror TDE —CrF
) oF 1 _0F .

where C'r > 0 and the boundary conditions given by (G > 0)

oF
r=0
OF -
| _GF(a). (16)
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Backstepping Control of Parabolic PDEs: Discretize — Design

@ The choice of the target system is based on the need to maintain the
parabolic character of the partial differential equation (to keep the highest
order derivatives) while removing the “problematic” terms.

@ We write the discretized equations for the target system as

};’_‘ Di+%F~‘i+1 — 2D1Fz + Diféﬁ‘ifl 1 F’i-&-I — Fi

- — D —C~F. (1

‘ h2 LT Crk (17)
with boundary conditions written as
P - F
=0 18
- , (18)
Fy — Fn_ -

% = —GFy. (19)

Prof. Eugenio Schuster ME 450 - Control of PDE Systems Spring 2021 16 /22



Backstepping Control of Parabolic PDEs: Discretize — Design

o Finally we look for a backstepping transformation of the discretized original
system into the discretization of the target system.
@ This coordinate transformation is sought in the form

Fi = EZ —ai—l(E17-~-aEi—1)7 (20)

@ Substracting (17) from (11) we obtain &;,_1 = F; — F;.
@ Expressing the obtained equation in terms of ag_1 = Ey — F},
k=1—1,i,7+ 1 we can obtain the expression for a; as

1 D;
= D (0 T ) e - Do @)

—hg; — K*CpE; + hzdi—l] )

starting with cg = 0 and where
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Backstepping Control of Parabolic PDEs: Discretize — Design

@ At this point we note the importance of the discretization method used to
express D; 1.

@ The avoidance of writing these terms as functions of the state variables at
point i + 1 is fundamental to achieve the desired backstepping
transformation (20).

@ However, it is important to emphasize that although the usage of this specific
discretization method is a requirement for the backstepping procedure, it
does not represent any limitation at all.
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Backstepping Control of Parabolic PDEs: Discretize — Design

o Similarly, substracting (19) from (13) and expressing the obtained equation in
terms of ag_1 = By — Fy, k=i — 1,7 we can define the control AE, as

AET = %—kEEN—G(EN—QN,l) . (23)

o This expression for AE, allows us to finally write the stabilizing laws for the
boundary actuation

Ey = an+ Env_1—an_2f. (24)

1
reentl
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Backstepping Control of Parabolic PDEs: Discretize — Design
o To show stability of the target system (14), we take the Lyapunov function

candidate | o
Vz—/ rE2dr
2 Jo

@ Then we have

vV o= /rFFdr,
0
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Backstepping Control of Parabolic PDEs: Discretize — Design

e Taking into account the boundary condition (16), we can write
. a 5 a 5 1 a
V = fC'F/ rF2dr — GaD(a)F?(a) 7/ rDF2dr < 76’5/ rE2dr,
0 0 0

and conclude that
vV < OV

showing that the system is asymptotically stable.

@ The proof that the discretized target system (17) with boundary conditions
(19) is asymptotically stable in 1> norm would be completely analogous. The
discrete Lyapunov function Vg = %ZZN:O F? would be considered instead and
following identical procedure the condition Vd < —CV; would be obtained.
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Backstepping Co

trol of Parabolic PDEs: Discretize — Design
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Figure 2: Simulation Results
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