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Backstepping Control of Parabolic PDEs: Discretize→ Design

Let us consider the following parabolic PDE 1

∂E

∂t
=

1

r

∂

∂r

[
rD

∂E

∂r

]
+ P, (1)

with arbitrary boundary conditions

∂E

∂r

∣∣∣∣
r=0

= 0, (2)

∂E

∂r

∣∣∣∣
r=a

= kEE(a). (3)

Note that E = E(r, t), D = D(E(r, t)) and P = P (r).

1The paper on “Control of a non-linear PDE system arising from non-burning tokamak
plasma transport dynamics” by Schuster et al. considers a rather more complex system where
the energy equation is combined with the density equation.
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Backstepping Control of Parabolic PDEs: Discretize→ Design

We write E(r, t) = Ē(r) + Ẽ(r, t), where Ē(r) is the equilibrium profile which
satisfies the equilibrium equation

0 =
1

r

∂

∂r

[
rD̄

∂Ē

∂r

]
+ P̄ , (4)

with boundary conditions

∂Ē

∂r

∣∣∣∣
r=0

= 0, (5)

∂Ē

∂r

∣∣∣∣
r=a

= kEĒ(a), (6)

Note that the equilibrium profile will depend not only on the boundary conditions
but also on the interior source P̄ .

It is important to note that in this approach we con-
sider only boundary actuation. Therefore, P = P̄ is
used only for the definition of the equilibrium profile.
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Backstepping Control of Parabolic PDEs: Discretize→ Design

The dynamics of the deviation variables Ẽ(r, t) is given by

∂Ẽ

∂t
=

1

r

∂

∂r

[
rD

∂(Ē + Ẽ)

∂r

]
+ P

=
1

r

∂

∂r

[
rD

∂Ẽ

∂r

]
+

1

r

∂

∂r

[
rD

∂Ē

∂r

]
+ P.

We take into account that

1

r

∂

∂r

[
rD

∂(·)
∂r

]
=

∂

∂r

[
D
∂(·)
∂r

]
+

1

r
D
∂(·)
∂r

,

and we define

g(E) =
∂

∂r

[
D
∂Ē

∂r

]
+

1

r
D
∂Ē

∂r
+ P. (7)
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Backstepping Control of Parabolic PDEs: Discretize→ Design

In this way we can rewrite the equations for the deviation variables as

∂Ẽ

∂t
=

∂

∂r

[
D
∂Ẽ

∂r

]
+

1

r
D
∂Ẽ

∂r
+ g(E), (8)

with boundary conditions

∂Ẽ

∂r

∣∣∣∣∣
r=0

= 0, (9)

∂Ẽ

∂r

∣∣∣∣∣
r=a

= kEẼ(a) + ∆Ẽr, (10)

The objective is to stabilize Ẽ(r, t), making it converge to
zero, by using ∆Ẽr(t) as actuation at the edge of the domain.
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Backstepping Control of Parabolic PDEs: Discretize→ Design

We dicretize the original set of PDE’s in space using a finite difference
method which gives a high order set of coupled nonlinear ordinary differential
equations.

We apply backstepping design to obtain a discretized coordinate
transformation that transforms the original system into a properly chosen
target system that is asymptotically stable in l2-norm. To achieve such
stability for the target system, convenient boundary conditions are chosen.

We use the property that the discretized coordinate transformation is
invertible for an arbitrary (finite) grid choice to conclude that the discretized
version of the original system is asymptotically stable and we obtain a
nonlinear feedback boundary control law in the original set of coordinates.
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Backstepping Control of Parabolic PDEs: Discretize→ Design

Figure 1: Control Approach
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Backstepping Control of Parabolic PDEs: Discretize→ Design

The idea is to design a controller using only a small number of steps of
backstepping, or equivalently using only a small number of state
measurements.

The measurements are taken from the interior of the domain and the
actuation is applied at the boundary of the domain.

To discretize the problem, let us start by defining h = 1
N , where N is an

integer, and use the notation xi(t) = x(ih, t), i = 0, 1, ..., N .
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Backstepping Control of Parabolic PDEs: Discretize→ Design

Discretization Method:

1

r

∂

∂r

[
rD

∂x

∂r

]
=

∂

∂r

[
D
∂x

∂r

]
+

1

r
D
∂x

∂r

First-order derivative:
1

r
D
∂x

∂r

∣∣∣∣
i

=
1

ih
Di
xi+1 − xi

h

Second-order derivative:

∂x

∂r

∣∣∣∣
i+ 1

2

=
xi+1 − xi

h

∂x

∂r

∣∣∣∣
i− 1

2

=
xi − xi−1

h

Prof. Eugenio Schuster ME 450 - Control of PDE Systems Spring 2021 9 / 22



Backstepping Control of Parabolic PDEs: Discretize→ Design

∂

∂r

[
D
∂x

∂r

]
i

=
Di+ 1

2

∂x
∂r

∣∣
i+ 1

2

−Di− 1
2

∂x
∂r

∣∣
i− 1

2

h

=
Di+ 1

2

(
xi+1−xi

h

)
−Di− 1

2

(
xi−xi−1

h

)
h

=
Di+ 1

2
xi+1 −

(
Di− 1

2
+Di+ 1

2

)
xi +Di− 1

2
xi−1

h2

=
Di+ 1

2
xi+1 − 2Dixi +Di− 1

2
xi−1

h2

Di− 1
2

= Di − Di−Di−1

h
h
2 = 1

2Di + 1
2Di−1

Di+ 1
2

= Di + Di−Di−1

h
h
2 = 3

2Di − 1
2Di−1

⇒ Di =
Di+ 1

2
+Di− 1

2

2
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Backstepping Control of Parabolic PDEs: Discretize→ Design

We write the discretized version of equation (8) as

˙̃Ei =
Di+ 1

2
Ẽi+1 − 2DiẼi +Di− 1

2
Ẽi−1

h2
+

1

ih
Di
Ẽi+1 − Ẽi

h
+ gi, (11)

gi =
Di+ 1

2
Ēi+1 − 2DiĒi +Di− 1

2
Ēi−1

h2
+

1

ih
Di
Ēi+1 − Ēi

h
+ P̄i,

for i = 1, ..., N − 1 and the discretized version of the boundary condition
equations (9)-(10) as

Ẽ1 − Ẽ0

h
= 0, (12)

ẼN − ẼN−1

h
= kEẼN + ∆Ẽr, (13)

where

Di− 1
2

= Di −
Di −Di−1

h

h

2
=

1

2
Di +

1

2
Di−1,

Di+ 1
2

= Di +
Di −Di−1

h

h

2
=

3

2
Di −

1

2
Di−1.
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Backstepping Control of Parabolic PDEs: Discretize→ Design

Note that the system (11)–(13) is a general Strict Feedback System, i.e., it
can be written as

ẋi = ψi(x̄i)xi+1 + φi(x̄i) i = 1, . . . , n− 1

ẋn = ψn(x)u+ φn(x)

where x̄i = [x1, . . . , xi]
T (x̄n = x), φi(x̄i) are smooth and φi(0) = 0, and

ψi(x̄i) 6= 0 for i = 1, . . . , n over the domain of interest.

The choice of a backward approximation for the derivatives of D at point i is
key to our approach. In this way it is possible to write Di+ 1

2
as functions of

the state variables at points i and i− 1. Otherwise, the system would NOT
be strict feedback.

We already studied how to design a backstepping controller for
this type of system. Do you remember?
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Backstepping Control of Parabolic PDEs: Discretize→ Design
Strict Feedback Systems:

ẋi = xi+1 + φi(x̄i) i = 1, . . . , n− 1

ẋn = u+ φn(x)

where x̄i = [x1, . . . , xi]
T , φi(x̄i) are smooth and φi(0) = 0.

We have a local triangular structure:

ẋ1 = x2 + φ1(x1)

ẋ2 = x3 + φ2(x1, x2)

...

ẋn = u+ φn(x1, x2, . . . , xn)

Linear part: Brunovsky canonical form ⇒ feedback linearizable
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Backstepping Control of Parabolic PDEs: Discretize→ Design

The control law

zi = xi − αi−1(x̄i−1) α0 = 0

αi(x̄i) = −zi−1 − cizi − φi +

i∑
j=1

∂αi−1

∂xj
(xj+1 + φj), ci > 0

u = αn

guarantees global asymptotic stability of x = 0.
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Backstepping Control of Parabolic PDEs: Discretize→ Design

We consider now the asymptotically stable (in L2 norm) target system

∂F̃

∂t
=

1

r

∂

∂r

[
rD

∂F̃

∂r

]
− CF F̃

=
∂

∂r

[
D
∂F̃

∂r

]
+

1

r
D
∂F̃

∂r
− CF F̃ , (14)

where CF > 0 and the boundary conditions given by (G > 0)

∂F̃

∂r

∣∣∣∣∣
r=0

= 0, (15)

∂F̃

∂r

∣∣∣∣∣
r=a

= −GF̃ (a). (16)
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Backstepping Control of Parabolic PDEs: Discretize→ Design

The choice of the target system is based on the need to maintain the
parabolic character of the partial differential equation (to keep the highest
order derivatives) while removing the “problematic” terms.

We write the discretized equations for the target system as

˙̃Fi =
Di+ 1

2
F̃i+1 − 2DiF̃i +Di− 1

2
F̃i−1

h2
+

1

ih
Di
F̃i+1 − F̃i

h
− CF F̃i, (17)

with boundary conditions written as

F̃1 − F̃0

h
= 0, (18)

F̃N − F̃N−1

h
= −GF̃N . (19)
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Backstepping Control of Parabolic PDEs: Discretize→ Design

Finally we look for a backstepping transformation of the discretized original
system into the discretization of the target system.

This coordinate transformation is sought in the form

F̃i = Ẽi − αi−1(Ẽ1, ..., Ẽi−1), (20)

Substracting (17) from (11) we obtain α̇i−1 = ˙̃Ei − ˙̃Fi.

Expressing the obtained equation in terms of αk−1 = Ẽk − F̃k,
k = i− 1, i, i+ 1 we can obtain the expression for αi as

αi =
1

Di+ 1
2

+ Di

i

[(
2Di +

Di

i
+ CFh

2

)
αi−1 −Di− 1

2
αi−2 (21)

−h2gi − h2CF Ẽi + h2α̇i−1

]
,

starting with α0 = 0 and where

α̇i−1 =
i−1∑
k=1

∂αi−1

∂Ẽk

˙̃Ek. (22)
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Backstepping Control of Parabolic PDEs: Discretize→ Design

At this point we note the importance of the discretization method used to
express Di+ 1

2
.

The avoidance of writing these terms as functions of the state variables at
point i+ 1 is fundamental to achieve the desired backstepping
transformation (20).

However, it is important to emphasize that although the usage of this specific
discretization method is a requirement for the backstepping procedure, it
does not represent any limitation at all.
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Backstepping Control of Parabolic PDEs: Discretize→ Design

Similarly, substracting (19) from (13) and expressing the obtained equation in
terms of αk−1 = Ẽk − F̃k, k = i− 1, i we can define the control ∆Ẽr as

∆Ẽr =
αN−1 − αN−2

h
− kEẼN −G

(
ẼN − αN−1

)
. (23)

This expression for ∆Ẽr allows us to finally write the stabilizing laws for the
boundary actuation

ẼN = αN−1 +
1

(1 +Gh)

[
ẼN−1 − αN−2

]
. (24)
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Backstepping Control of Parabolic PDEs: Discretize→ Design

To show stability of the target system (14), we take the Lyapunov function
candidate

V =
1

2

∫ a

0

rF̃ 2dr

Then we have

V̇ =

∫ a

0

rF̃ ˙̃Fdr,

=

∫ a

0

rF̃

{
1

r

∂

∂r

[
rD

∂F̃

∂r

]
− CF F̃

}
dr,

= F̃ rD
∂F̃

∂r

∣∣∣∣∣
a

0

−
∫ a

0

rD

(
∂F̃

∂r

)2

dr − CF

∫ a

0

rF̃ 2dr

= aD(a)F̃ (a)F̃r(a)−
∫ a

0

rCF F̃
2dr −

∫ a

0

rDF̃ 2
r dr.
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Backstepping Control of Parabolic PDEs: Discretize→ Design

Taking into account the boundary condition (16), we can write

V̇ = −CF

∫ a

0

rF̃ 2dr −GaD(a)F̃ 2(a)−
∫ a

0

rDF̃ 2
r dr ≤ −C

1

2

∫ a

0

rF̃ 2dr,

and conclude that

V̇ ≤ −CV

showing that the system is asymptotically stable.

The proof that the discretized target system (17) with boundary conditions
(19) is asymptotically stable in l2 norm would be completely analogous. The

discrete Lyapunov function Vd = 1
2

∑N
i=0 F̃

2
i would be considered instead and

following identical procedure the condition V̇d ≤ −CVd would be obtained.
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Backstepping Control of Parabolic PDEs: Discretize→ Design
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Figure 2: Simulation Results
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