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Linear PDEs

Two Dimensional Second Order Linear Elliptic PDE:

Lu = −
[
∂

∂x

(
p
∂u

∂x

)
+

∂

∂y

(
p
∂u

∂y

)]
+ qu = f(x, y), (x, y) ∈ Ω (1)

Boundary Conditions:

Dirichlet
u(x, y) = α(x, y), ∀(x, y) ∈ Γ = ∂Ω (2)

Neumann
∂u

∂n
(x, y) = β(x, y), ∀(x, y) ∈ Γ = ∂Ω (3)

Robin
∂u

∂n
(x, y) + δu(x, y) = γ(x, y), ∀(x, y) ∈ Γ = ∂Ω (4)
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Linear PDEs

One Dimensional Linear Parabolic PDE:

Lu =
∂u

∂t
− ∂

∂x

(
a(x, t)

∂u

∂x

)
+ d(x, t)u = f(x, t), (x, t) ∈ G (5)

Initial and Boundary Conditions:

Cauchy problem on the infinite domain

u|t=0 = ϕ(x), −∞ < x <∞ (6)

Cauchy problem on the semi-infinite domain

u|t=0 = ϕ(x), 0 < x <∞,
[
α1(t)

∂u

∂x
+ α0(t)u

]
x=0

= α2(t) (7)

Cauchy problem on the finite domain

u|t=0 = ϕ(x), 0 < x < l, (8)[
α1(t)

∂u

∂x
+ α0(t)u

]
x=0

= α2(t),

[
β1(t)

∂u

∂x
+ β0(t)u

]
x=l

= β2(t) (9)
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Linear PDEs

Hyperbolic PDE:

First Order
∂u

∂t
+ a

∂u

∂x
= 0, a is a constant (10)

Second Order (Wave Equation)

∂2u

∂t2
− a∂

2u

∂x2
= 0, a is a constant (11)

We note that

∂2u

∂t2
− a∂

2u

∂x2
=

[
∂

∂t
+ i
√
a
∂

∂x

] [
∂

∂t
− i
√
a
∂

∂x

]
u = 0, (12)

where i =
√
−1.
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Numerical Techniques

In solving PDEs, the primary challenge is to create effective and numerically stable
approximations.

Finite Difference Method uses finite difference equations to approximate
derivatives on a prescribed grid.

Finite Element Method uses the weak solution or the variational formation
of PDEs to create finite dimensional approximations.

A brief introduction of many numerical methods can be found in the paper by
Eitan Tadmor:

Numerical Methods for Partial Differential Equations.
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Numerical Techniques

Finite Difference Method

The first order derivative is defined by

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
, (13)

then a reasonable approximation could be

f ′(x0) ≈ f(x0 + h)− f(x0)

h
, h is small. (14)

It can be also derived from a Taylor series expansion around x0:

f(x0 + h) = f(x0) +
f ′(x0)

1!
h+

f (2)(x0)

2!
h2 + . . . (15)

Then,

f ′(x0) =
f(x0 + h)− f(x0)

h
− f (2)(x0)

2!
h+ . . . (16)

Approximation of order O(h). Can we obtain higher-order approximations?
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Numerical Techniques

Finite Difference Method

Let us now compute two Taylor series expansions around x0:

f(x0 + h) = f(x0) +
f ′(x0)

1!
h+

f (2)(x0)

2!
h2 +

f (3)(x0)

3!
h3 + . . . (17)

f(x0 − h) = f(x0)− f ′(x0)

1!
h+

f (2)(x0)

2!
h2 − f (3)(x0)

3!
h3 + . . . (18)

By subtracting one from the other, we obtain

f(x0 + h)− f(x0 − h) = 2
f ′(x0)

1!
h+ 2

f (3)(x0)

3!
h3 + . . . (19)

Then,

f ′(x0) =
f(x0 + h)− f(x0 − h)

2h
− f (3)(x0)

3!
h2 + . . . (20)

We say that this is an approximation of order O(h2).
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Numerical Techniques

Finite Difference Method - ODE Example

Given the ODE (Ordinary Differential Equations)

u′(x) = 3u(x) + 2, 0 ≤ x ≤ l (21)

we approximate the first order derivative by

u′(x) ≈ u(x+ h)− u(x)

h
, (22)

then we obtain the algebraic equation

u(x+ h) = u(x) + h [3u(x) + 2] . (23)

Given, for instance, u(0), we can solve iteratively for u(ih) for i = 1, . . . , N with
h = l/N . Defining ui , u(ih), we can write

ui+1 = ui + h [3ui + 2] , (24)

which can be solved in a loop for i = 0, . . . , N − 1.
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Numerical Techniques

Finite Difference Method - PDE Example (Heat Equation)

Let us consider the normalized heat equation in one dimension,

∂u
∂t = ∂2u

∂x2 ,
u(0, t) = u(1, t) = 0( boundary condition),
u(x, 0) = u0(x)( initial condition).

(25)

Let us also consider the grid partition: u(xj , tn) = unj . Therefore,

x0, x1, . . . , xj , . . . , xJ , xj+1 − xj , h, (26)

t0, t1, . . . , tn, . . . , tN , tn+1 − tn , k. (27)
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Numerical Techniques

Finite Difference Method - PDE Example (Heat Equation)

Explicit Method

un+1
j − unj

k
=

unj+1 − 2unj + unj−1
h2

(28)

⇒ un+1
j = (1− 2r)unj + runj−1 + runj+1, (29)

where r = k/h2.

This scheme is numerically stable only when r ≤ 1/2. The numerical errors is
of the order O(k) +O(h2).
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Numerical Techniques

Finite Difference Method - PDE Example (Heat Equation)

Stability Analysis - Projection Matrix

un+1
j = runj−1 + (1− 2r)unj + runj+1, (30)

can be written as
Un+1 = AUn (31)

A =


1− 2r r
r 1− 2r r

. . .
. . .

. . .
. . .

. . . r
r 1− 2r

 , U ,


u0
u1
...
...
uJ

 . (32)

The eigenvalues of A are given by

λj = 1− 4r sin2

(
jπ

2J

)
,  = 1, . . . , J. (33)

We achieve maxj |λj | < 1 only if r < 1
2 .
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Numerical Techniques

Finite Difference Method - PDE Example (Heat Equation)

Stability Analysis - Von Neumann

un+1
j = runj−1 + (1− 2r)unj + runj+1. (34)

Let us assume unj = Ane(i2π(jh)). Then,

An+1ei2π(jh) = rAnei2π((j−1)h) + (1− 2r)Anei2π(jh) + rAnei2π((j+1)h)

= rAnei2π(jh)ei2π(−h) + (1− 2r)Anei2π(jh) + rAnei2π(jh)ei2π(h)

and

An+1

An
= re−i2πh + 1− 2r + re−i2πh = 1 + r(e−i2πh + e−i2πh − 2) (35)

Noting that

sin

(
θ

2

)
=
eiθ/2 − e−iθ/2

2i
→ sin2

(
θ

2

)
= −e

iθ − e−iθ − 2

4
(36)
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Numerical Techniques

Finite Difference Method - PDE Example (Heat Equation)

We take θ , 2πh to write

G ,
An+1

An
= 1− 4r sin2

(
θ

2

)
(37)

Stability is achieved if |G| < 1, which implies∣∣∣∣1− 4r sin2

(
θ

2

)∣∣∣∣ < 1 (38)

Since 4r sin2
(
θ
2

)
is always positive, this requires

4r sin2

(
θ

2

)
< 2 ⇐⇒ r <

1

2
(39)
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Numerical Techniques

Finite Difference Method - PDE Example (Heat Equation)

Implicit Method

un+1
j − unj

k
=

un+1
j+1 − 2un+1

j + un+1
j−1

h2
(40)

⇒ unj = (1 + 2r)un+1
j − run+1

j−1 − ru
n+1
j+1 , (41)

where r = k/h2.

This scheme is always numerically stable. The numerical errors is of the order
O(k) +O(h2).
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Numerical Techniques

Finite Difference Method - PDE Example (Heat Equation)

Crank-Nicolson Method

un+1
j − unj

k
=

1

2

[
un+1
j+1 − 2un+1

j + un+1
j−1

h2
+
unj+1 − 2unj + unj−1

h2

]
(42)

⇒ (2 + 2r)un+1
j − run+1

j−1 − ru
n+1
j+1 = (2− 2r)unj + runj−1 + unj−1 + runj+1,

where r = k/h2.

This scheme is always numerically stable. The numerical errors is of the order
O(k2) +O(h4).
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Numerical Techniques

Finite Element Method - ODE Example

Consider the following stationary equation

−u′′(x) + u(x) = f(x), x ∈ (0, π/2), u(0) = u′(π/2) = 0. (43)

Given any function v ∈ V = {v ∈ H1((0, π/2))|v(0) = 0}, we can define the
weak formulation as∫ π/2

0

[−u′′(x) + u(x)] v(x)dx =

∫ π/2

0

f(x)v(x)dx (44)

⇒
∫ π/2

0

(u′(x)v′(x) + u(x)v(x)) dx =

∫ π/2

0

f(x)v(x)dx, (45)

for u, v ∈ V .
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Numerical Techniques

Finite Element Method - ODE Example

We discretize the infinite dimensional space V by means of a piecewise linear
functional space Vh.

Linear Element (h = π
2m )

φi(x) = x
h − i+ 1, x ∈ [(i− 1)h, ih],

φi(x) = −xh + i+ 1, x ∈ [ih, (i+ 1)h],
φi(x) = 0, otherwise.

(46)

Prof. Eugenio Schuster ME 450 - Control of PDE Systems Spring 2021 17 / 22



Numerical Techniques

Finite Element Method - ODE Example
We look for an approximate solution

uh =

m∑
j=1

Ujφj . (47)

Matrix form is obtained by replacing u = uh and v , φi in weak formulation:∫ π/2

0

 m∑
j=1

Ujφ
′
j(x)φ′i(x) +

m∑
j=1

Ujφj(x)φi(x)

 dx =

∫ π/2

0

f(x)φi(x)dx, φi, φj ∈ Vh. (48)

We can obtain a linear system of equations AU = (K +M)U = F , where
U = [U1 U2 . . . Um]T with K,M ∈ Rm×m and F ∈ Rm

Kij ,
∫ π/2

0

φ′j(x)φ′i(x)dx,Mij ,
∫ π/2

0

φj(x)φi(x)dx, Fi ,
∫ π/2

0

f(x)φi(x)dx.
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Numerical Techniques

Finite Element Method - PDE Example (Heat Equation)
Given the normalized heat equation in one dimension,

∂u
∂t = ∂2u

∂x2 ,
u(0, t) = u(1, t) = 0( boundary condition),
u(x, 0) = u0(x)( initial condition).

(49)

The weak form is given by(
∂u

∂t
, v

)
L2(0,1)

+ a(u, v) = 0, a(u, v) =

∫ 1

0

∂u

∂x

∂v

∂x
dx, ∀v ∈ V. (50)

We look for an approximate solution

u ≈ uh =

m∑
i=1

ui(t)φi(x). (51)

By choosing v = φi, we obtain the linear system M dU
dt +KU = 0, where

U = (ui)
m
i=1, Mij =

∫ 1

0

φi(x)φj(x)dx, Kij =

∫ 1

0

φ′i(x)φ′j(x)dx

Note: t has NOT been discretized! OK for control design. Not for simulation.
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Numerical Techniques

Finite Element Method
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Control/Optimization Based on ROM

 

Physics & 
Processes 

(PDEs)

Empirical 
MOR

Low 
Dimensional 

Systems

Large Scale 
ODEs

Discretization 
(FEM, FDM, 

etc.)
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Control/Optimization Based on ROM

Two different approaches:

Discretization-then-Design

Design-then-Discretization

Reference:

Discrete Concepts in PDE Constrained Optimization,
Chapter 3 in the book by M. Hinze et al.,
Optimization with PDE Constraints.
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