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Linear PDEs

Two Dimensional Second Order Linear Elliptic PDE:

Lu:_[% (p%)Jra%(pg—zﬂJrqu:f(%y% @y e (1)

Boundary Conditions:

@ Dirichlet

u(z,y) =a(z,y), Y@y €T =00 )
@ Neumann 5

u

3—n($7y) = B(z,y), V(z,y) e =00 (3)

@ Robin 5
u
o, @y +Hou(@,y) =(z,y), V¥(z,y) el =00 (4)
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Linear PDEs

One Dimensional Linear Parabolic PDE:

Lu= % - % ( (1' )ZZ’LL'L> -l—d(:v,t)u = f(x7t)’ (l’,t) cqG (5)

Initial and Boundary Conditions:
@ Cauchy problem on the infinite domain
Ulp=o = p(z), —o00< T <00 (6)

@ Cauchy problem on the semi-infinite domain

uli=o = (), 0 < z < oo, [al(t)gz + ao(t)u} y =aq(t) (7)

@ Cauchy problem on the finite domain

uli=0 = p(z), 0<z<I, (8)
a0 +aulthul= ax(0), [0 + (Ouf 50 0)
=0 =l
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Linear PDEs

Hyperbolic PDE:

@ First Order P P
u U .
a + aa_x =0, ais a constant (10)

@ Second Order (Wave Equation)

92 0?
873 — aa—xg =0, aisa constant (11)
We note that
Pu 9u 9

o . ~0]l0 .

where 1 = /—1.
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Numerical Techniques

In solving PDEs, the primary challenge is to create effective and numerically stable
approximations.

e Finite Difference Method uses finite difference equations to approximate
derivatives on a prescribed grid.

o Finite Element Method uses the weak solution or the variational formation
of PDEs to create finite dimensional approximations.

@ A brief introduction of many numerical methods can be found in the paper by
Eitan Tadmor:

Numerical Methods for Partial Differential Equations.
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Numerical Techniques

Finite Difference Method
@ The first order derivative is defined by

! _
f'(wo) = lim - : (13)
then a reasonable approximation could be
I (x0) ~ Flwo + h})l — f(‘ro), h is small. (14)
@ It can be also derived from a Taylor series expansion around xg:
! (2)
Flwo+h) = flag) + L ETO)H ! 2(,5”°)h2 +... (15)
Then,
h) — (2)

h 2!
Approximation of order O(h). Can we obtain higher-order approximations?
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Numerical Techniques

Finite Difference Method

@ Let us now compute two Taylor series expansions around xg:

flao +h) = f(zo) + f/(l! Iy I8 ;(!xo) /e 3(_ 03 (17)
fl@o—h) = f(xo) — f/(l“"!”‘))h + f@;(!””‘))ﬁ f(3;(.$0)h3 .. (18)
o By subtracting one from the other, we obtain
Flzo+h) — flzo — h) = 2f/(11;0)h + 2f(3)3(f”°)h3 +... (19
Then,
ey = @D = fao—h) _ fOwo) 0)

2h 3!
We say that this is an approximation of order O(h?).
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Numerical Techniques

Finite Difference Method - ODE Example

Given the ODE (Ordinary Differential Equations)
u(z) =3u(xz)+2, 0<ax<l] (21)
we approximate the first order derivative by

1oy Wt h) —u(x)
u'(z) ~ — (22)

then we obtain the algebraic equation
u(z + h) = u(z) + h[3u(z) + 2]. (23)

Given, for instance, u(0), we can solve iteratively for u(ih) for i = 1,..., N with
h =1/N. Defining u; = u(ih), we can write

Ui41 = U + h [31111 + 2] R (24)

which can be solved in a loop fori =0,...,N — 1.
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Numerical Techniques

Finite Difference Method - PDE Example (Heat Equation)
@ Let us consider the normalized heat equation in one dimension,

du _ 9%u
= 922>

ot
u(0,t) = u(1,t) = 0( boundary condition), (25)
u(x,0) = ug(x)( initial condition).

o Let us also consider the grid partition: u(x;,t,) = u}. Therefore,

A
LOsLLyeeyLjyeny X, l‘j+1—33j:h, (26)

to, bty tns ooy tNy tng1 —tn = k. (27)
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Numerical Techniques

Finite Difference Method - PDE Example (Heat Equation)
o Explicit Method

1
u;”"’ —uf Cufyy —2uf ol 08
Bl - (28)
= u?“ = (I —=2r)uj +ruj_y +rujq, (29)

where r = k/h?.

@ This scheme is numerically stable only when r < 1/2. The numerical errors is
of the order O(k) + O(h?).

j.n+1
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Numerical Techniques

Finite Difference Method - PDE Example (Heat Equation)
@ Stability Analysis - Projection Matrix

n+1l _
u]» =

rui_q 4+ (1= 2r)uf +rul, g,
can be written as

(30)
Uttt = AU (31)
1-2r T Ug
r 1—-2r r Uy
A= ' R T N N 7))
r :
r 1-—2r uy
The eigenvalues of A are given by

)\j:1—4rsin2(;§>7 1=1,...,J.

We achieve max; [A;| < 1 only if 7 < 1.
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Numerical Techniques

Finite Difference Method - PDE Example (Heat Equation)
@ Stability Analysis - Von Neumann

u?“ =ru;_y + (1= 2r)u} +ruj. (34)

Let us assume /' = Areli2m(Gh)) - Then,

An+lei27r(jh) :TAnezQﬂ'((jfl)h) + (1 - 2T)An6i27r(jh) + TAn6i27r((j+1)h)

:,rAneiQﬂ'(jh)eiQﬂ'(—h) + (1 _ 2T)Anei21r(jh) + 7q14n€i27'r(jh)ei27‘r(h)

and
AnJrl ) . ) )
T _ ,r67127rh + 1—92r + ,r67127rh =1 + T(67227rh + 67127rh _ 2) (35)
Noting that
) 0 ei0/2 _ o—i6/2 (0 el _ =i _ 9
sin (2> =——Fp, —— —sin <2) =——F (36)
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Numerical Techniques

Finite Difference Method - PDE Example (Heat Equation)

We take 6 £ 27h to write

n+1
G= Ay sin? (g) (37)

An

Stability is achieved if |G| < 1, which implies
.o (0
1 —4rsin 2 )< 1 (38)
Since 4rsin” (£) is always positive, this requires

1
4r sin® (g) <2 <= r< 3 (39)
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Numerical Techniques

Finite Difference Method - PDE Example (Heat Equation)

@ Implicit Method

n+l . n n+l n+1 n+1
u; uwp o uyly 2uj +u;ly (40)
k o h?
n o n+1 n+1 n+1
=u; = (1 —|—27")uj —ruiy —ruily, (41)

where r = k/h?.
@ This scheme is always numerically stable. The numerical errors is of the order
O(k) + O(h?).

j-1,n+1 j,n+1  j+1,n+1
@ J

Jj.n

Prof. Eugenio Schuster ME 450 - Control of PDE Systems Spring 2021 14 /22



Numerical Techniques

Finite Difference Method - PDE Example (Heat Equation)

@ Crank-Nicolson Method

J J j+1 j—1
42
k 2 h2 h2 J( )

w1 felt 20t gt — 2u)
J + J J J

n+1 n+1 n+1l __ n n n n
= (24 2r)ufT —rufTy —rully = (2= 20)uf +orulog +ug el

where r = k/h?.

@ This scheme is always numerically stable. The numerical errors is of the order
O(k?) + O(h%).

j-1,m1  j,ntl j+1,n+1

j-1,n j.n j+1,n
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Numerical Techniques

Finite Element Method - ODE Example

o Consider the following stationary equation

—u"(x) +u(x) = f(z), z€(0,7/2), u(0)=1u'(7/2) =0. (43)

e Given any function v € V = {v € H'((0,7/2))|v(0) = 0}, we can define the
weak formulation as

/2 /2
/ () + u(z)] v(z)de = / F@@)de  (44)
0 0

/2 /2
= / (W (@' (2) + u(e)o(@)) de = / f@yo(x)de,  (45)

for u,v € V.
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Numerical Techniques

Finite Element Method - ODE Example

@ We discretize the infinite dimensional space V' by means of a piecewise linear
functional space V},.

o Linear Element (h = ﬁ)

L)

Om
1
|
1
I
|
171
]
1
1
i
1
0 x Xm'%
di(x) = F—i+1, wel[(i—1)h,ih],
¢i(r) = —f+i+l, welih i+ 1A, (46)
¢i(x) = 0, otherwise.
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Numerical Techniques

Finite Element Method - ODE Example
@ We look for an approximate solution

Up, :ZUj¢j' (47)
j=1

@ Matrix form is obtained by replacing u = u;, and v £ ¢, in weak formulation:
y rep g

/2
/O ZU¢ ZU@ dr =

w/2
/o f(x)pi(x)dx, i, ¢ € Vi (48)

@ We can obtain a linear system of equations AU = (K + M)U = F', where
U=[U1U; ... Uy,)T with K,M € R™*™ and F € R™
77/2 71'/2 77/2

| ¢ (@) () da, My; = | ¢ (x)¢i(x)dx, F; = | f(x)pi(x)dx
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Numerical Techniques

Finite Element Method - PDE Example (Heat Equation)
@ Given the normalized heat equation in one dimension,

Bu _ 8%
C’)IZ )

(O t) = u(1,t) = 0( boundary condition), (49)
u(x,0) = ug(x)( initial condition).

@ The weak form is given by

ou Ou Ov
<8t’v> o +a(u,v) =0, a(u,v)= / %67(1 YveV. (50)

@ We look for an approximate solution

U~ Uy = Zuz(t)(bz(x) (51)

By choosing v = ¢;, we obtain the linear system Md—U + KU = 0, where

U= ()i, M;= /d)l z)p;(x)dr, Kij /(;5

Note: ¢t has NOT been discretized! OK for control design. Not for simulation.
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Numerical Techniques

Finite Element Method

stationary KU=F

. discretef
semidiscrete
- MEUQ) + KUt} = F(t), t 21
ﬁ nonstationary { V(o) = Uo
physical system FEM
- uﬂ%‘; finite element
nonlinear method
L{u)=F in D
bu)=g ondl

Balt) = 9(1)

u{0) = ug

{ su(t) + Lu(t) = f(1), 124
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Control /Optimization Based on ROM

Physics &
Processes
(PDEs)

Discretization
(FEM, FDM,
etc.)

Empirical
MOR

A ————
Low
Dimensional
Systems

Large Scale
(0]»] 3
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Control /Optimization Based on ROM

Two different approaches:
@ Discretization-then-Design
@ Design-then-Discretization

Reference:

Discrete Concepts in PDE Constrained Optimization,
Chapter 3 in the book by M. Hinze et al.,
Optimization with PDE Constraints.
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