

Control of PDE Systems

Lecture 4 (Meetings 7 & 8)

Eugenio Schuster

schuster@lehigh.edu
Mechanical Engineering and Mechanics
Lehigh University

Two Dimensional Second Order Linear Elliptic PDE:

$$Lu = - \left[\frac{\partial}{\partial x} \left(p \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(p \frac{\partial u}{\partial y} \right) \right] + qu = f(x, y), \quad (x, y) \in \Omega \quad (1)$$

Boundary Conditions:

- Dirichlet

$$u(x, y) = \alpha(x, y), \quad \forall (x, y) \in \Gamma = \partial\Omega \quad (2)$$

- Neumann

$$\frac{\partial u}{\partial n}(x, y) = \beta(x, y), \quad \forall (x, y) \in \Gamma = \partial\Omega \quad (3)$$

- Robin

$$\frac{\partial u}{\partial n}(x, y) + \delta u(x, y) = \gamma(x, y), \quad \forall (x, y) \in \Gamma = \partial\Omega \quad (4)$$

Linear PDEs

One Dimensional Linear Parabolic PDE:

$$Lu = \frac{\partial u}{\partial t} - \frac{\partial}{\partial x} \left(a(x, t) \frac{\partial u}{\partial x} \right) + d(x, t)u = f(x, t), \quad (x, t) \in G \quad (5)$$

Initial and Boundary Conditions:

- Cauchy problem on the infinite domain

$$u|_{t=0} = \varphi(x), \quad -\infty < x < \infty \quad (6)$$

- Cauchy problem on the semi-infinite domain

$$u|_{t=0} = \varphi(x), \quad 0 < x < \infty, \quad \left[\alpha_1(t) \frac{\partial u}{\partial x} + \alpha_0(t)u \right]_{x=0} = \alpha_2(t) \quad (7)$$

- Cauchy problem on the finite domain

$$u|_{t=0} = \varphi(x), \quad 0 < x < l, \quad (8)$$

$$\left[\alpha_1(t) \frac{\partial u}{\partial x} + \alpha_0(t)u \right]_{x=0} = \alpha_2(t), \quad \left[\beta_1(t) \frac{\partial u}{\partial x} + \beta_0(t)u \right]_{x=l} = \beta_2(t) \quad (9)$$

Linear PDEs

Hyperbolic PDE:

- First Order

$$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0, \quad a \text{ is a constant} \quad (10)$$

- Second Order (Wave Equation)

$$\frac{\partial^2 u}{\partial t^2} - a \frac{\partial^2 u}{\partial x^2} = 0, \quad a \text{ is a constant} \quad (11)$$

We note that

$$\frac{\partial^2 u}{\partial t^2} - a \frac{\partial^2 u}{\partial x^2} = \left[\frac{\partial}{\partial t} + i\sqrt{a} \frac{\partial}{\partial x} \right] \left[\frac{\partial}{\partial t} - i\sqrt{a} \frac{\partial}{\partial x} \right] u = 0, \quad (12)$$

where $i = \sqrt{-1}$.

Numerical Techniques

In solving PDEs, the primary challenge is to create effective and numerically stable approximations.

- **Finite Difference Method** uses finite difference equations to approximate derivatives on a prescribed grid.
- **Finite Element Method** uses the weak solution or the variational formulation of PDEs to create finite dimensional approximations.
- A brief introduction of many numerical methods can be found in the paper by Eitan Tadmor:

Numerical Methods for Partial Differential Equations.

Numerical Techniques

Finite Difference Method

- The first order derivative is defined by

$$f'(x_0) = \lim_{h \rightarrow 0} \frac{f(x_0 + h) - f(x_0)}{h}, \quad (13)$$

then a reasonable approximation could be

$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0)}{h}, \quad h \text{ is small.} \quad (14)$$

- It can be also derived from a Taylor series expansion around x_0 :

$$f(x_0 + h) = f(x_0) + \frac{f'(x_0)}{1!}h + \frac{f^{(2)}(x_0)}{2!}h^2 + \dots \quad (15)$$

Then,

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} - \frac{f^{(2)}(x_0)}{2!}h + \dots \quad (16)$$

Approximation of order $\mathcal{O}(h)$. Can we obtain higher-order approximations?

Numerical Techniques

Finite Difference Method

- Let us now compute two Taylor series expansions around x_0 :

$$f(x_0 + h) = f(x_0) + \frac{f'(x_0)}{1!}h + \frac{f^{(2)}(x_0)}{2!}h^2 + \frac{f^{(3)}(x_0)}{3!}h^3 + \dots \quad (17)$$

$$f(x_0 - h) = f(x_0) - \frac{f'(x_0)}{1!}h + \frac{f^{(2)}(x_0)}{2!}h^2 - \frac{f^{(3)}(x_0)}{3!}h^3 + \dots \quad (18)$$

- By subtracting one from the other, we obtain

$$f(x_0 + h) - f(x_0 - h) = 2\frac{f'(x_0)}{1!}h + 2\frac{f^{(3)}(x_0)}{3!}h^3 + \dots \quad (19)$$

Then,

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0 - h)}{2h} - \frac{f^{(3)}(x_0)}{3!}h^2 + \dots \quad (20)$$

We say that this is an approximation of order $\mathcal{O}(h^2)$.

Numerical Techniques

Finite Difference Method - ODE Example

Given the ODE (Ordinary Differential Equations)

$$u'(x) = 3u(x) + 2, \quad 0 \leq x \leq l \quad (21)$$

we approximate the first order derivative by

$$u'(x) \approx \frac{u(x+h) - u(x)}{h}, \quad (22)$$

then we obtain the algebraic equation

$$u(x+h) = u(x) + h [3u(x) + 2]. \quad (23)$$

Given, for instance, $u(0)$, we can solve iteratively for $u(ih)$ for $i = 1, \dots, N$ with $h = l/N$. Defining $u_i \triangleq u(ih)$, we can write

$$u_{i+1} = u_i + h [3u_i + 2], \quad (24)$$

which can be solved in a loop for $i = 0, \dots, N - 1$.

Finite Difference Method - PDE Example (Heat Equation)

- Let us consider the normalized heat equation in one dimension,

$$\begin{aligned}\frac{\partial u}{\partial t} &= \frac{\partial^2 u}{\partial x^2}, \\ u(0, t) &= u(1, t) = 0 \text{ (boundary condition)}, \\ u(x, 0) &= u_0(x) \text{ (initial condition)}.\end{aligned}\tag{25}$$

- Let us also consider the grid partition: $u(x_j, t_n) = u_j^n$. Therefore,

$$x_0, x_1, \dots, x_j, \dots, x_J, \quad x_{j+1} - x_j \triangleq h, \tag{26}$$

$$t_0, t_1, \dots, t_n, \dots, t_N, \quad t_{n+1} - t_n \triangleq k. \tag{27}$$

Numerical Techniques

Finite Difference Method - PDE Example (Heat Equation)

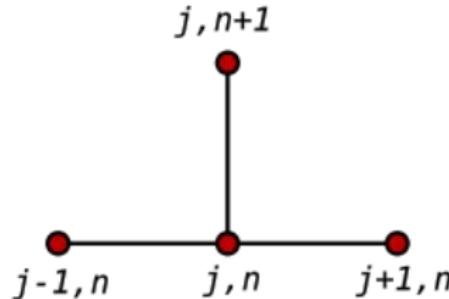
- Explicit Method

$$\frac{u_j^{n+1} - u_j^n}{k} = \frac{u_{j+1}^n - 2u_j^n + u_{j-1}^n}{h^2} \quad (28)$$

$$\Rightarrow u_j^{n+1} = (1 - 2r)u_j^n + ru_{j-1}^n + ru_{j+1}^n, \quad (29)$$

where $r = k/h^2$.

- This scheme is numerically stable only when $r \leq 1/2$. The numerical errors is of the order $\mathcal{O}(k) + \mathcal{O}(h^2)$.



Numerical Techniques

Finite Difference Method - PDE Example (Heat Equation)

- Stability Analysis - Projection Matrix

$$u_j^{n+1} = ru_{j-1}^n + (1-2r)u_j^n + ru_{j+1}^n, \quad (30)$$

can be written as

$$U^{n+1} = AU^n \quad (31)$$

$$A = \begin{bmatrix} 1-2r & r & & & \\ r & 1-2r & r & & \\ & \ddots & \ddots & \ddots & \\ & & \ddots & \ddots & r \\ & & & r & 1-2r \end{bmatrix}, \quad U \triangleq \begin{bmatrix} u_0 \\ u_1 \\ \vdots \\ \vdots \\ u_J \end{bmatrix}. \quad (32)$$

The eigenvalues of A are given by

$$\lambda_j = 1 - 4r \sin^2 \left(\frac{j\pi}{2J} \right), \quad j = 1, \dots, J. \quad (33)$$

We achieve $\max_j |\lambda_j| < 1$ only if $r < \frac{1}{2}$.

Numerical Techniques

Finite Difference Method - PDE Example (Heat Equation)

- Stability Analysis - Von Neumann

$$u_j^{n+1} = ru_{j-1}^n + (1 - 2r)u_j^n + ru_{j+1}^n. \quad (34)$$

Let us assume $u_j^n = A^n e^{i2\pi(jh)}$. Then,

$$\begin{aligned} A^{n+1} e^{i2\pi(jh)} &= rA^n e^{i2\pi((j-1)h)} + (1 - 2r)A^n e^{i2\pi(jh)} + rA^n e^{i2\pi((j+1)h)} \\ &= rA^n e^{i2\pi(jh)} e^{i2\pi(-h)} + (1 - 2r)A^n e^{i2\pi(jh)} + rA^n e^{i2\pi(jh)} e^{i2\pi(h)} \end{aligned}$$

and

$$\frac{A^{n+1}}{A^n} = re^{-i2\pi h} + 1 - 2r + re^{-i2\pi h} = 1 + r(e^{-i2\pi h} + e^{-i2\pi h} - 2) \quad (35)$$

Noting that

$$\sin\left(\frac{\theta}{2}\right) = \frac{e^{i\theta/2} - e^{-i\theta/2}}{2i} \rightarrow \sin^2\left(\frac{\theta}{2}\right) = -\frac{e^{i\theta} - e^{-i\theta} - 2}{4} \quad (36)$$

Finite Difference Method - PDE Example (Heat Equation)

We take $\theta \triangleq 2\pi h$ to write

$$G \triangleq \frac{A^{n+1}}{A^n} = 1 - 4r \sin^2 \left(\frac{\theta}{2} \right) \quad (37)$$

Stability is achieved if $|G| < 1$, which implies

$$\left| 1 - 4r \sin^2 \left(\frac{\theta}{2} \right) \right| < 1 \quad (38)$$

Since $4r \sin^2 \left(\frac{\theta}{2} \right)$ is always positive, this requires

$$4r \sin^2 \left(\frac{\theta}{2} \right) < 2 \iff r < \frac{1}{2} \quad (39)$$

Numerical Techniques

Finite Difference Method - PDE Example (Heat Equation)

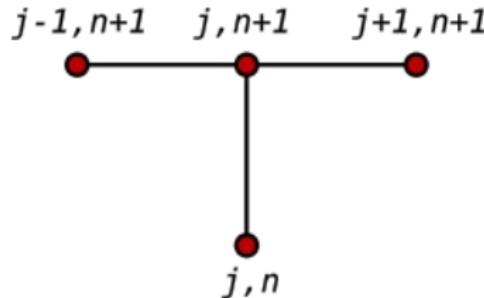
- Implicit Method

$$\frac{u_j^{n+1} - u_j^n}{k} = \frac{u_{j+1}^{n+1} - 2u_j^{n+1} + u_{j-1}^{n+1}}{h^2} \quad (40)$$

$$\Rightarrow u_j^n = (1 + 2r)u_j^{n+1} - ru_{j-1}^{n+1} - ru_{j+1}^{n+1}, \quad (41)$$

where $r = k/h^2$.

- This scheme is always numerically stable. The numerical errors is of the order $\mathcal{O}(k) + \mathcal{O}(h^2)$.



Numerical Techniques

Finite Difference Method - PDE Example (Heat Equation)

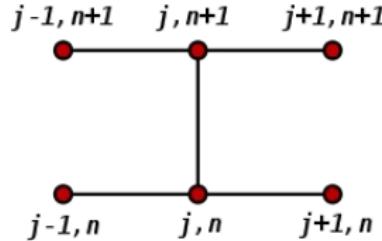
- Crank-Nicolson Method

$$\frac{u_j^{n+1} - u_j^n}{k} = \frac{1}{2} \left[\frac{u_{j+1}^{n+1} - 2u_j^{n+1} + u_{j-1}^{n+1}}{h^2} + \frac{u_{j+1}^n - 2u_j^n + u_{j-1}^n}{h^2} \right] \quad (42)$$

$$\Rightarrow (2 + 2r)u_j^{n+1} - ru_{j-1}^{n+1} - ru_{j+1}^{n+1} = (2 - 2r)u_j^n + ru_{j-1}^n + u_{j-1}^n + ru_{j+1}^n,$$

where $r = k/h^2$.

- This scheme is always numerically stable. The numerical errors is of the order $\mathcal{O}(k^2) + \mathcal{O}(h^4)$.



Numerical Techniques

Finite Element Method - ODE Example

- Consider the following stationary equation

$$-u''(x) + u(x) = f(x), \quad x \in (0, \pi/2), \quad u(0) = u'(\pi/2) = 0. \quad (43)$$

- Given any function $v \in V = \{v \in H^1((0, \pi/2)) | v(0) = 0\}$, we can define the **weak formulation** as

$$\int_0^{\pi/2} [-u''(x) + u(x)] v(x) dx = \int_0^{\pi/2} f(x) v(x) dx \quad (44)$$

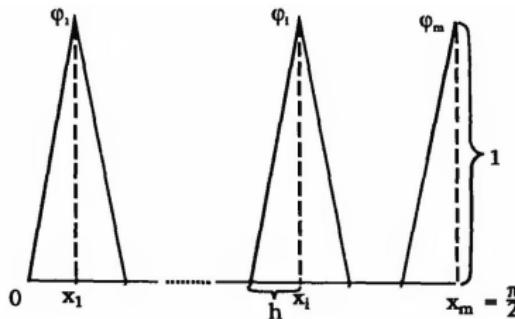
$$\Rightarrow \int_0^{\pi/2} (u'(x)v'(x) + u(x)v(x)) dx = \int_0^{\pi/2} f(x) v(x) dx, \quad (45)$$

for $u, v \in V$.

Numerical Techniques

Finite Element Method - ODE Example

- We discretize the infinite dimensional space V by means of a piecewise linear functional space V_h .
- Linear Element ($h = \frac{\pi}{2m}$)



$$\begin{aligned}\phi_i(x) &= \frac{x}{h} - i + 1, & x \in [(i-1)h, ih], \\ \phi_i(x) &= -\frac{x}{h} + i + 1, & x \in [ih, (i+1)h], \\ \phi_i(x) &= 0, & \text{otherwise.}\end{aligned}\tag{46}$$

Numerical Techniques

Finite Element Method - ODE Example

- We look for an approximate solution

$$u_h = \sum_{j=1}^m U_j \phi_j. \quad (47)$$

- Matrix form is obtained by replacing $u = u_h$ and $v \triangleq \phi_i$ in weak formulation:

$$\begin{aligned} & \int_0^{\pi/2} \left(\sum_{j=1}^m U_j \phi'_j(x) \phi'_i(x) + \sum_{j=1}^m U_j \phi_j(x) \phi_i(x) \right) dx = \\ & \int_0^{\pi/2} f(x) \phi_i(x) dx, \quad \phi_i, \phi_j \in V_h. \end{aligned} \quad (48)$$

- We can obtain a linear system of equations $AU = (K + M)U = F$, where $U = [U_1 \ U_2 \ \dots \ U_m]^T$ with $K, M \in \mathbb{R}^{m \times m}$ and $F \in \mathbb{R}^m$

$$K_{ij} \triangleq \int_0^{\pi/2} \phi'_j(x) \phi'_i(x) dx, \quad M_{ij} \triangleq \int_0^{\pi/2} \phi_j(x) \phi_i(x) dx, \quad F_i \triangleq \int_0^{\pi/2} f(x) \phi_i(x) dx.$$

Numerical Techniques

Finite Element Method - PDE Example (Heat Equation)

- Given the normalized heat equation in one dimension,

$$\begin{aligned}\frac{\partial u}{\partial t} &= \frac{\partial^2 u}{\partial x^2}, \\ u(0, t) &= u(1, t) = 0 \text{ (boundary condition),} \\ u(x, 0) &= u_0(x) \text{ (initial condition).}\end{aligned}\tag{49}$$

- The weak form is given by

$$\left(\frac{\partial u}{\partial t}, v \right)_{L^2(0,1)} + a(u, v) = 0, \quad a(u, v) = \int_0^1 \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} dx, \quad \forall v \in V. \tag{50}$$

- We look for an approximate solution

$$u \approx u_h = \sum_{i=1}^m u_i(t) \phi_i(x). \tag{51}$$

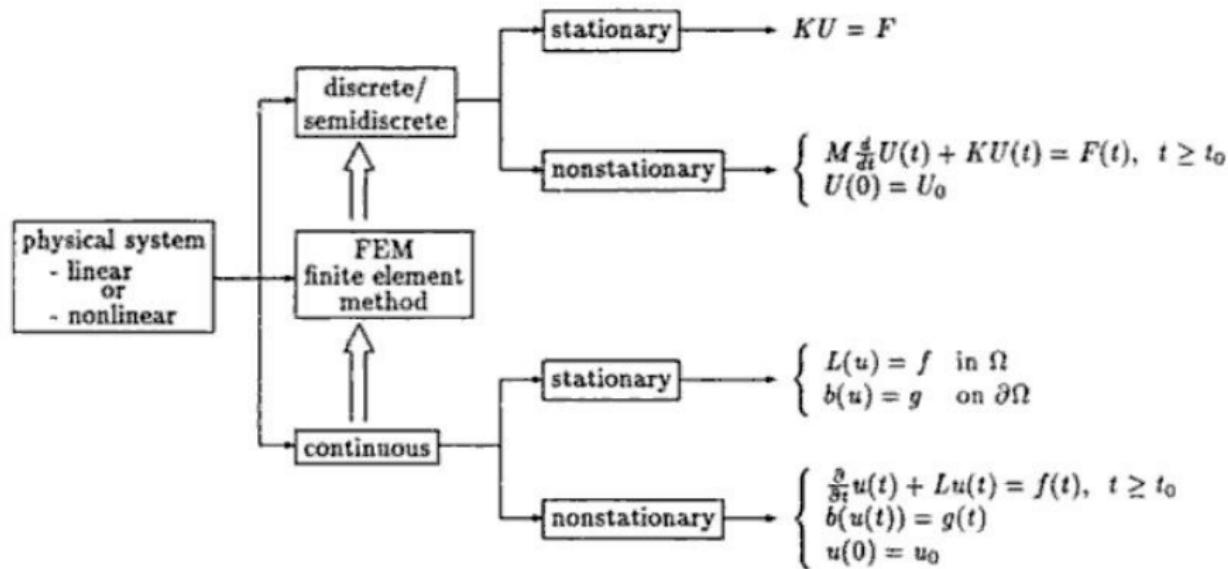
By choosing $v = \phi_i$, we obtain the linear system $M \frac{dU}{dt} + KU = 0$, where

$$U = (u_i)_{i=1}^m, \quad M_{ij} = \int_0^1 \phi_i(x) \phi_j(x) dx, \quad K_{ij} = \int_0^1 \phi'_i(x) \phi'_j(x) dx$$

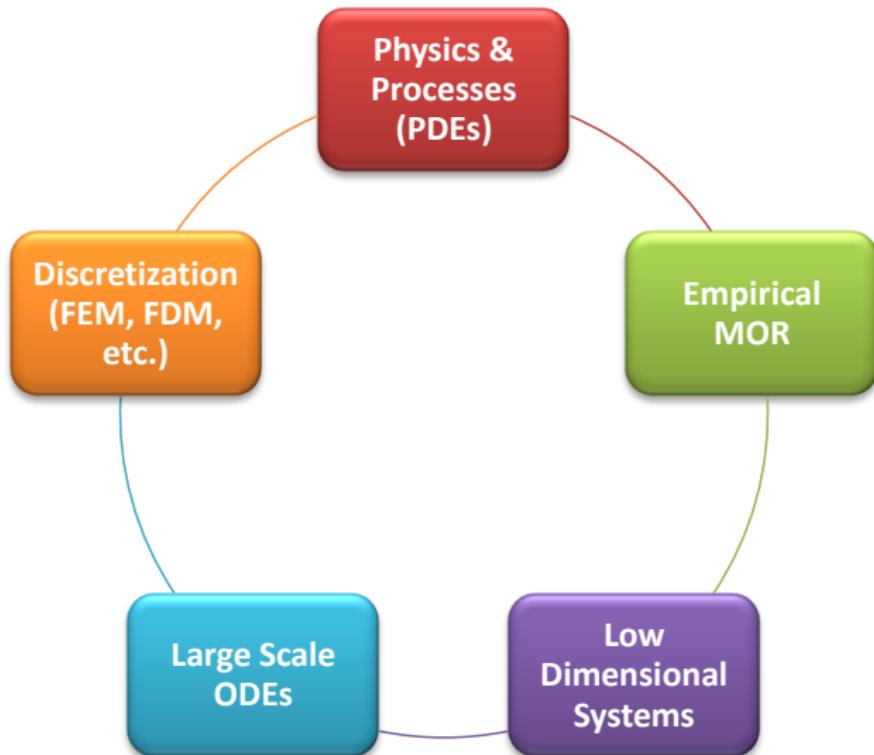
Note: t has NOT been discretized! OK for control design. Not for simulation.

Numerical Techniques

Finite Element Method



Control/Optimization Based on ROM



Control/Optimization Based on ROM

Two different approaches:

- Discretization-then-Design
- Design-then-Discretization

Reference:

Discrete Concepts in PDE Constrained Optimization,

Chapter 3 in the book by M. Hinze et al.,
Optimization with PDE Constraints.