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Control Lyapunov Function (CLF)

Let us consider the following system,

ﬁ:f(nau)v neR", u€eR, f(0,0):O, (1)

the following two tasks are equivalent:

Task 1: Find a feedback control law u = ¢(7) such that the equilibrium
1 = 0 of the closed-loop system

n=fn,on) (2)

is globally asymptotically stable.

Task2 : Find a feedback control law u = ¢(7) and a Lyapunov function
candidate V(7)) such that

V= ZZ( VF(n,é(n) < —W(n), W(n) positive definite (3)

with W (n) positive definite.
A system for which good choices of V (), W (n) exist is said to possess a CLF.
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Backstepping

Assumption: There exist a stabilizing state feedback control law ¢(n), with
¢(0) =0, and a Lyapunov function V(1) s.t.

O;‘;[f(n) +g(me(n)] < =W(n), W(n) positive definite 4

Lemma [K] 14.2: Integrator Backstepping
no= fn)+gm)E (5)
£ = u (6)

There is a whole integrator between w and £. Under the previous assumption, the
system has a CLF

1
Valn,€) = V) + 5(6— 61))>, (o augmented) ™)
and the corresponding feedback that gives global asymptotical stability is

el = o) + G (I +90)e = gt e>0 (9)

Moreover, if all the assumptions hold globally and V' (n) is radially unbounded, the
origin will be globally asymptotically stable.
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Backstepping

Proof: From the book.
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Backstepping

Backstepping: We have a “virtual” control £ and we have to go back through an

integrator.

U

fn)

Ui

fl)

Figure 1: Original block diagram.
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Backstepping

fl)+9()e()

Figure 2: Block diagram after introducing ¢(n).
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Backstepping

() £ + 9036

Figure 3: Block diagram after “backstepping” —(n) through integrator.
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Backstepping

Example:

1“1 = X1X2 (9)
l"g = u (10)

Let us take x5 as the virtual controller for the x1 system, i.e.
Itl = T1v (11)

What v control law could we take to stabilize the equilibrium z; = 07
Could we take v = ¢(z1) = —17 Yes, but ¢(z1) # 0 when 21 = 0.
Let us take

Then,

Take V(21) = 122 > 0. Then, V(z1) = —=}.
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Backstepping

Let us define 2 £ 29 — ¢(71) = 22 = 2 + (1) = z — 2. Then,

.. 0d(x)
Z=1Ty— qg;ll)m =u+ 2z (z172) = u + 223 (2 — 27) (14)
and we can write
. . 3
r1 = T1To T = —x]+T2
Ty = u = = u+ 222 (2 — 22) (15)

Take Vo (z1,2) = V(21) + 322 = 327 + 22 > 0. Then,

Va(x1,2) = 2181 + 22 = w1 (=2 +212) + 2(u+ 223 (2 — 7)) (16)
= —a +2(u+a2?+223(z — 2?)) (17)
What v control law could we take to make V,(x1,2) < 0? Let us make

utai 4203 (2—23) = —2 = u=—z—2]-223(2—12]) = —2z—2] 2232, (18)

Then, V,(z1,2) = —a} — 22 < 0= (21,2) = 0= (21,22) — 0.
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Backstepping

Example [K] 14.8:

& = i a4 (19)
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Backstepping

In the case of more than one integrator

o= f)+9m& (21)

& = & (22)

: (23)

én—.l = gn (24)
gn = u (25)

we only have to apply the backstepping lemma n times.
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Backstepping

Example [K] 14.9:

& = i a4 (26)
1‘2 = I3 (27)
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Backstepping

In the more general case

o= () gl (29)
§ = fa(x7€)+ga(xa§)u (30)
If go(z,&) # 0 over the domain of interest, the input transformation
u = ga(x7§) [’U—fa(:c,f)] (31)
will reduce the system to
T o= flx)+g(@) (32)
£ = v (33)

and the backstepping lemma can be applied.

Prof. Eugenio Schuster ME 450 - Control of PDE Systems Spring 2021 13/18



Backstepping

Strict Feedback Systems:

T, = ZIJH_1+¢Z(£1) 1=1,....,n—1 (34)
where 7; = [x1,...,2;]T, ¢:(Z;) are smooth and ¢;(0) = 0.

We have a local triangular structure:

i1 = xo+ ¢1(x1) (36)
To = I3+ (,252(171, LEQ) (37)

: (38)
Tn = u+ op(x1,20,...,2,) (39)

Linear part: Brunovsky canonical form = feedback linearizable
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Backstepping

The control law

Zi = .’L“—Oéi_l(fi_l) ag =0 (4—0)

@i (ZTi) = —zio1—Cizi— ¢+ Z $J+1 + ¢J) c; >0 (41)

u = Qy (42)
guarantees global asymptotic stability of = 0.

Proof:
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Backstepping

By picking
_ _ : dai—q —
i(Z;) = —zi—1 — ¢z — ¢i(T) + Z B (zj41+¢5(Z;)), ¢ >0  (46)
=1 9%
we obtain
Zi = —Zi—1 — GiZi + Zit1 (47)
We only need to define
20=0, zpy1=u—a,=0 (48)
to be able to write
—C1 1
-1 —C2 1
= 22 Az (49)
. 1
-1 —c,

This is a linear matrix with special structure!!!
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Backstepping

Take
e ,

i=1
and compute

n n n n n
V= E 2% = — E ciz? — E ZiZi—1 + E 2iZig1 = — g ciz? <0 (51)
i=1 i=1 i=1 i=1 i=1

Since
Zi :xi—a¢_1($17$2,~--axi—1) (52)
we note that
1 0 0O ... 0
X 1 0O ... 0
0z C . ‘ :
— = : . T BER 53
= (53)
... X 1 0
X ... ... X 1

Then, z(z) is smoothly invertible and we conclude that = 0 is g.a.s. Note that
we can find another transformation A —s A* with desired A*.
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Backstepping

The technique can be extended to more general Strict Feedback Systems:

T, = wz(i'z)lliﬁ_l + (j)z(:fz) i=1,....,n—1 (54)
Tn = Yp(z)u+ dp(z) (55)
where Z; = [z1,...,2;]T (2, = z), ¢:(Z;) are smooth and ¢;(0) = 0, and
¥;i(Z;) #0 for i = 1,...,n over the domain of interest.

Note: More in the book.
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