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Approaches to Control of Distributed Parameter Systems

Controllability

Optimal control

Abstract approaches based on semigroups

Frequency-domain approaches based on robust control (not natural because
PDEs come in time domain and conversion to frequency domain is hard;
model reduction, implied by the robust control approach, is also hard)

“Boundary damper” controllers (for a limited class of systems and under a
very limited actuation architecture)

Very few of these results have ever been tested in simulations.
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Some Well Known Books

Krstic and Smyshlyaev;

Christofides;

Lions;

Komornik;

Curtain and Zwart;

Lasiecka and Triggiani;

Bensoussan, Da Prato, Delfour, and Mitter;

Li and Yong;

van Keulen;

Luo, Guo, and Morgul;

Lagnese;

Lasiecka;

Banks, Smith, and Wang;

de Queiroz, Dawson, Nagarkatti, and Zhang;

Aamo and Krstic;

Gunzburger;
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Applications

Flexible structures (aerospace, civil, AFM)

Chemical process control

Fluids, aerodynamics, turbulence, propulsion, acoustics

Quantum control

Delays (machine tool chatter, combustion instabilities, etc.)
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Classes of PDEs

Parabolic (heat transfer, chemical reactions, etc)

Hyperbolic (waves—acoustics, strings, etc)

Other “odd” equations (most physically relevant problems are):

− Navier-Stokes

− Korteweg-de Vries

− Kuramoto-Sivashinsky

− Some beam/plate/shell models
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Actuator Location

Boundary control

In-domain control (a few actuators)

Distributed control (lots of actuators)

Diffusivity control
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Stability of PDE Systems

No useful “general Lyapunov theory” for infinite dimensional systems

Spatial norms

Inequalities

− Poincare

− Agmon

− Sobolev

Energy boundedness vs. pointwise (in space) boundedness
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Choice of Boundary Control

Dirichlet (common in fluid problems)

Neumann (common in thermal problems)
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Static vs. Dynamic Behavior in PDEs

Equilibrium/static problems = PDEs themselves (or, in the 1D case, ODEs).
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Nonlinear Issues

Blow up in time (superlinear nonlinearities like in chemical reactions)

Blow up in space (shock waves—Burgers, etc.)

Boundedness despite quadratic nonlinearities (Navier-Stokes)
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Introduction

Simplest physical model: heating rod

Introduction

Simplest physical model: heating rod

Heat equation Tt(x, t) = !Txx(x, t)

Left boundary condition T (0, t) = T1

Right boundary condition T (L, t) = T2

Initial condition T (x,0) = T0(x)

Want to represent this equation in a form suitable for our course.

Heat equation Tτ (ξ, τ) = εTξξ(ξ, τ) (1)

Left boundary condition T (0, τ) = T1 (2)

Right boundary condition T (L, τ) = T2 (3)

Initial condition T (ξ, 0) = T0(ξ) (4)

We want to represent this equation in a form suitable for our course:

Nondimensional variables that describe the error between the unsteady
temperature and the equilibrium profile of the temperature.

Prof. Eugenio Schuster ME 450 - Control of PDE Systems Spring 2021 11 / 34



Introduction

Procedure:
1 Scale ξ to normalize length: x = ξ

L ⇒ Tτ = ε
L2Txx

2 Scale τ to normalize diffusion coefficient: t = ε
L2 τ ⇒ Tt = Txx

3 Find steady-state solution T̄

T̄ ′′(x) = 0
T̄ (0) = T1
T̄ (1) = T2

⇒ T̄ = T1 + x(T2 − T1) (5)

4 Introduce the error variable w = T − T̄
wt = wxx (6)

w(0) = 0 (7)

w(1) = 0 (8)

with initial condition w(x, 0) = w0.
5 Finally, suppress time and space dependence where it does not lead to

confusion; i.e., by w, w(0) we always mean w(x, t), w(0, t), respectively,
unless specifically stated otherwise.
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Basic Types of Boundary Conditions

Basic types of boundary conditions for PDEs in one dimension:

Dirichlet: w(0) = 0 (temperature)

Neumann: wx(0) = 0 (heat flux)

Robin(mixed): w(0) + qwx(0) = 0

The control design approach will depend on the type of boundary condition.
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Stability of PDEs

Heat equation

wt = wxx (9)

w(0) = 0 (10)

w(1) = 0 (11)

As in finite dimension, there are two ways to analyze stability properties:

Find the exact solution

− Usually not possible

Use Lyapunov theory to show stability without solving the PDE

− There is no general Lyapunov theory for PDEs

For this simple plant both methods can be applied

− Not so for more complicated systems
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Lyapunov Stability

Most common Lyapunov function for PDEs is L2 spatial norm:

V =
1

2

∫ 1

0

w2(x)dx ,
1

2
‖w‖2 (12)

Time derivative along the solutions:

V̇ =
dV

dt
=

∫ 1

0

w(x)wt(x)dx (13)

=

∫ 1

0

w(x)wxx(x)dx (wt = wxx) (14)

= w(x)wx(x)|10 −
∫ 1

0

w2
x(x)dx (Integration by Parts) (15)

= −
∫ 1

0

w2
x(x)dx (w(0) = w(1) = 0) (16)

So the system is stable, but is it asymptotically stable? Not demonstrated yet!

Need to express ‖wx‖ in terms of ‖w‖.
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Integration by parts

Product Rule:

d(uv)

dx
=
du

dx
v + u

dv

dx
⇐⇒ u

dv

dx
=
d(uv)

dx
− du

dx
v (17)

Integrating both sides of the equation we obtain

∫ 1

0

u
dv

dx
dx =

∫ 1

0

d(uv)

dx
dx−

∫ 1

0

du

dx
vdx (18)

= uv|10 −
∫ 1

0

du

dx
vdx (19)
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Useful Inequalities

Young’s Inequality (special case):

ab ≤ γ

2
a2 +

1

2γ
b2 (20)

Cauchy-Schwarz Inequality:

∫ 1

0

uwdx ≤
(∫ 1

0

u2dx

) 1
2
(∫ 1

0

w2dx

) 1
2

= ‖u‖‖w‖ (21)

And using Young’s Inequality ‖u‖‖w‖ ≤ γ
2 ‖u‖2 + 1

2γ ‖w‖2,

∫ 1

0

uwdx ≤
(∫ 1

0

u2dx

) 1
2
(∫ 1

0

w2dx

) 1
2

= ‖u‖‖w‖ ≤ γ

2
‖u‖2 +

1

2γ
‖w‖2 (22)
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Useful Inequalities

Poincaré Inequality:

∫ 1

0

w2dx ≤ 2w2(1) + 4

∫ 1

0

w2
xdx (23)

∫ 1

0

w2dx ≤ 2w2(0) + 4

∫ 1

0

w2
xdx (24)

In particular, if one of the boundary conditions is zero, then

‖w‖ ≤ 2‖wx‖ (25)
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Cauchy-Schwarz Inequality

Proof of Cauchy-Schwarz Inequality:

8y : 0  (yu(x) + w(x))2 )
Z 1
0 (yu(x) + w(x))2 dx

Then,

80  y2
Z 1
0 u(x)2dx + 2y

Z 1
0 u(x)w(x)dx +

Z 1
0 w(x)2dx = Ay2 + 2By + C

where

A =
Z 1
0 u(x)2dx, B =

Z 1
0 u(x)w(x)dx, C =

Z 1
0 w(x)2dx

The quadratic function f (y) = Ay2+2By+C is non-negative for all y. The discriminant
of f (y) = 0 is given by (2B)2 � 4AC. It the discriminant were positive, there would be
two distinct real roots, �1 < �2, and f = A(y��1)(y��2) would be negative somewhere.
When y is between �1 and �2, (y � �1) is positive and (y � �2) is negative, and their
product is negative. When y is greater than both �1 and �2, (y � �1) and (y � �2) are
positive, and their product is positive. This means that the sign of f (y) must change at
y = �2. But we have f (y) � 0!!! So the discriminant cannot be positive. Therefore,

(2B)2 � 4AC  0 () B2  AC
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Cauchy-Schwarz Inequality

Then
 Z 1

0 u(x)w(x)dx
!2 

Z 1
0 u(x)2dx

Z 1
0 w(x)2dx

Z 1
0 u(x)w(x)dx 

sZ 1
0 u(x)2dx

sZ 1
0 w(x)2dx

Another useful inequality:

�a2 � 2ab +
1

�
b2 =

0
BBB@
p
�a �

vuuuuut
1

�
b

1
CCCA

2

� 0

Therefore,

�a2 +
1

�
b2 � 2ab

or

ab  �

2
a2 +

1

2�
b2
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Poincare Inequality

Proof of Poincare Inequality:
Z 1

0
w2dx = xw2|10−2

Z 1

0
xwwxdx

= w2(1)−2
Z 1

0
xwwx dx

≤ w2(1)+
1
2

Z 1

0
w2dx+2

Z 1

0
x2w2x dx

We get

1
2

Z 1

0
w2dx ≤ w2(1)+2

Z 1

0
x2w2xdx

≤ w2(1)+2
Z 1

0
w2xdx

Finally
Z 1

0
w2dx ≤ 2w2(1)+4

Z 1

0
w2x dx
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Lyapunov Stability

Back to Lyapunov function:

V̇ = −
∫ 1

0

w2
x(x)dx (26)

≤ −1

4

∫ 1

0

w2dx Poincare Inequality (w(0) = w(1) = 0) (27)

≤ −1

2
V (28)

Therefore
V (t) ≤ V (0)e−t/2 or ‖w(x, t)‖ ≤ ‖w(x, 0)‖e−t/4 (29)

We showed that ‖w‖ → 0 as t→∞ (exponential stability in L2).

Figure 1 illustrates demonstrated stability results.
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Typical Response
Typical response
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Figure 1: Response of a heat equation to a nonsmooth initial condition.
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Lyapunov Stability

By using Lyapunov stability theory we predicted the overall decay of the
solution without knowledge of the exact solution w(x, t) for a specific initial
condition w0(x).

For PDEs, the L2 form of stability in (29) is just one of the many possible
(non-equivalent) forms of stability.

Lyapunov function (12) is just one of the many possible choices, a well
known feature of the Lyapunov method for ODEs.

Nevertheless, the L2 stability, quantified by (12)) and (29), is usually the
easiest one to prove for a vast majority of PDEs, and an estimate of the form
(29) is often needed before proceeding to study stability in higher norms.

Once again, we showed that ‖w‖ → 0 as t→∞ (exponential stability in L2).

This does not imply that w(x, t)→ 0 as t→∞ for all x. There could be
“unbounded spikes” for some x along the spatial domain (on a set of measure
zero) that do not contribute to the L2-norm (unlikely to occur for the heat
equation as shown in Figure 1).
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Pointwise Stability
Pointwise Stability

Would like to show that

max
x∈[0,1]

|w(x, t)| ≤ Ke−
t
4 max
x∈[0,1]

|w(x,0)|

This result cannot be proved. However, it is possible to show a slightly weaker result

max
x∈[0,1]

|w(x, t)| ≤ Ke−
t
4∥w0∥H1

We define H1 norm as

∥w∥H1 :=
Z 1

0
w2dx+

Z 1

0
w2x dx

Note that by using Poincare inequality it is possible to drop the integral of w2 for most
problems
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Agmon InequalityThe following inequality bounds the maximum norm by L2 and H1 norms and boundary
condition:

Agmon Inequality

max
x∈[0,1]

|w(x)|2 ≤ w2(0)+2∥w∥∥wx∥

max
x∈[0,1]

|w(x)|2 ≤ w2(1)+2∥w∥∥wx∥

Proof:
Z x

0
w(")w"(")d" =

1
2
w2(")|x0 =

1
2
w2(x)− 1

2
w2(0)

Using triangle inequality we get
1
2
w2(x) ≤ 1

2
w2(0)+

Z x

0
|w("||w"(")|d"

w2(x) ≤ w2(0)+2
Z 1

0
|w(")||w"(")|dx

max
x∈[0,1]

|w(x)|2 ≤ w2(0)+2∥w∥∥wx∥
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Pointwise Stability

Back to our problem:

wt = wxx
w(0) = 0
w(1) = 0

Let us use the Lyapunov function

V =
1
2

Z 1

0
w2(x)dx+

1
2

Z 1

0
w2x(x)dx

V̇ =
Z 1

0
wwxx dx+

Z 1

0
wxwtx dx

= w(x)wx(x)|10−
Z 1

0
w2x dx+wt(x)wx(x)10−

Z 1

0
wxxwt dx

= −
Z 1

0
w2x dx−

Z 1

0
w2xx dx

≤ −1
2
∥wx∥2− 1

2
∥wx∥2

≤ −1
8
∥w∥2− 1

2
∥wx∥2

≤ −1
4
V
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Pointwise Stability

We have

∥w(t)∥2+∥wx(t)∥2 ≤ e−t/2
(
∥w0∥2+∥w0x∥2

)

where w0 = w(x,0) is the initial condition.

Finally,
max
x∈[0,1]

|w(x, t)|2 ≤ 2∥w(t)∥∥wx(t)∥ (Agmon inequality)

≤ ∥w(t)∥2+∥wx(t)∥2

≤ e−t/2
(
∥w0∥2+∥w0x∥2

)

We showed that the equilibrium w≡ 0 is asymptotically stable for all x ∈ [0,1].
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Exact SolutionsExact Solutions

Exist mostly for the plants with constant parameters.

Two standard methods for finding exact solutions: separation of variables and Laplace
transform.

Separation of Variables

Heat equation with reaction:

ut = uxx+&u
u(0) = 0
u(1) = 0

Postulate the solution in the form u(x, t) = X(x)T (t).
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Exact Solutions

Substitute u(x, t) = X(x)T (t) in the equation:

X(x)Ṫ (t) = X ′′(x)T (t)+&X(x)T (t)

Divide by X(x)T (t):

Ṫ
T

=
X ′′ +&X

X
= '

ODE for T :

Ṫ = 'T
T = e't (without loss of generality)

ODE for X :

X ′′ +(&−')X = 0
X(0) = X(1) = 0

Solution for X(x):

X(x) = Asin(
√
&−'x)+Bcos(

√
&−'x)
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Exact Solutions

X(x) = Asin(
√
&−'x)+Bcos(

√
&−'x)

X(0) = 0 ⇒ B= 0
X(1) = 0 ⇒ Asin(

√
&−') = 0

⇒
√
&−' = (n, where n= 0,1,2, ...

⇒ '= &−(2n2

Solution

un(x, t) = Ane(&−(
2n2)t sin((nx), n= 0,1,2, ...

Since the PDE is linear, the sum of solutions is also a solution. Therefore the formal
general solution is

u(x, t) =
%

)
n=1

Ane(&−(
2n2)t sin((nx)

To find An we use the knowledge of the initial condition u(x,0) = u0(x)
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Exact Solutions

Set t = 0 ⇒ u0(x) = )%n=1An sin((nx)

Multiply both sides with sin((mx) ⇒ u0(x)sin((mx) = sin((mx))%n=1An sin((nx)

Use the orthogonality property
R 1
0 sin((mx)sin((nx)dx=

{
1/2 n= m
0 n ̸= m

}

to get
Z 1

0
u0(x)sin((mx)dx=

1
2
Am

The exact solution is eigenvalues effect of initial conditions

u(x, t) = 2
%

)
n=1

e
︷ ︸︸ ︷
(&−(2n2) t sin((nx)︸ ︷︷ ︸

︷ ︸︸ ︷
Z 1

0
sin((nx)u0(x)dx

eigenfunctions

The stability condition is & < (2. Note that it is much less conservative than the one
obtained using Lyapunov method (which gives &< 1/4).
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Exact Solutions

Example. Find values of the parameter g for which the system

ut = uxx+gu(0)
ux(0) = u(1) = 0

is unstable.

Let u(x, t) = e'tX(x). Substitute this solution in the PDE to get an ODE

X ′′(x)−'X = −gX(0)

which has a general solution

X(x) = Asinh(
√
'x)+Bcosh(

√
'x)+

g
'
X(0)

To find B, let x= 0:

X(0) = B+
g
'
X(0) ⇒ B= X(0)

(
1− g

'

)

Boundary condition at x= 0 gives

X ′(0) = 0 ⇒ A= 0
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Exact Solutions

We have

X(x) = X(0)
[g
'

+
(
1− g

'

)
cosh(

√
'x)

]

Boundary condition at x= 1 gives

X(1) = 0 ⇒ cosh(
√
') =

g
g−'

This equation cannot be solved in closed form. But we can still find the region of stability.

Solve for g in terms of ':

g =
'cosh(

√
')

cosh(
√
')−1

Take the limit '→ 0:

g = lim
'→0

'cosh(
√
')

cosh(
√
')−1 = lim

'→0

'(1+'/2)
1+'/2−1 = 2

Therefore, the PDE is unstable for g> 2.
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