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Approaches to Control of Distributed Parameter Systems

o Controllability
@ Optimal control
@ Abstract approaches based on semigroups

o Frequency-domain approaches based on robust control (not natural because
PDEs come in time domain and conversion to frequency domain is hard;
model reduction, implied by the robust control approach, is also hard)

e “Boundary damper” controllers (for a limited class of systems and under a
very limited actuation architecture)

@ Very few of these results have ever been tested in simulations.
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Some Well Known Books

Krstic and Smyshlyaev;

Christofides;

Lions;

Komornik;

Curtain and Zwart;

Lasiecka and Triggiani;

Bensoussan, Da Prato, Delfour, and Mitter;
Li and Yong;

van Keulen;

Luo, Guo, and Morgul,

Lagnese;

Lasiecka;

Banks, Smith, and Wang;

de Queiroz, Dawson, Nagarkatti, and Zhang;
Aamo and Krstic;

Gunzburger;
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Applications

o Flexible structures (aerospace, civil, AFM)

@ Chemical process control

o Fluids, aerodynamics, turbulence, propulsion, acoustics

@ Quantum control

@ Delays (machine tool chatter, combustion instabilities, etc.)
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Classes of PDEs

@ Parabolic (heat transfer, chemical reactions, etc)
@ Hyperbolic (waves—acoustics, strings, etc)
@ Other “odd” equations (most physically relevant problems are):

— Navier-Stokes
— Korteweg-de Vries
— Kuramoto-Sivashinsky

— Some beam/plate/shell models
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Actuator Location

@ Boundary control
@ In-domain control (a few actuators)
o Distributed control (lots of actuators)

o Diffusivity control
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Stability of PDE Systems

@ No useful “general Lyapunov theory” for infinite dimensional systems
@ Spatial norms
o Inequalities

— Poincare
— Agmon

— Sobolev

@ Energy boundedness vs. pointwise (in space) boundedness
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Choice of Boundary Control

@ Dirichlet (common in fluid problems)

@ Neumann (common in thermal problems)
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Static vs. Dynamic Behavior in PDEs

o Equilibrium/static problems = PDEs themselves (or, in the 1D case, ODEs).
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Nonlinear Issues

@ Blow up in time (superlinear nonlinearities like in chemical reactions)

@ Blow up in space (shock waves—Burgers, etc.)

@ Boundedness despite quadratic nonlinearities (Navier-Stokes)
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Introduction

Simplest physical model: heating rod

T T2
|
0 L x
Heat equation T (&,7) = eTee(&,7) (1)
Left boundary condition T0,7)=T 2)
Right boundary condition T(L,7)="Ts 3)
Initial condition T(£,0) =T(8) (4)

We want to represent this equation in a form suitable for our course:

@ Nondimensional variables that describe the error between the unsteady
temperature and the equilibrium profile of the temperature.
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Introduction

Procedure:

o
(2]
o

Scale £ to normalize length: = = % =T, = 15T
Scale 7 to normalize diffusion coefficient: t = /57 = T; = T},

Find steady-state solution T
() = 0 B
1:(0) =T =T=T,+ .T(TQ — Tl) (5)
1) = T
Introduce the error variable w =T — T
Wt Weg (6)
w(0) 0 7
w(1) = 0 (8)

with initial condition w(z,0) = wy.

Finally, suppress time and space dependence where it does not lead to
confusion; i.e., by w, w(0) we always mean w(z,t), w(0,t), respectively,
unless specifically stated otherwise.
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Basic Types of Boundary Conditions

Basic types of boundary conditions for PDEs in one dimension:
@ Dirichlet: w(0) = 0 (temperature)
@ Neumann: w,(0) = 0 (heat flux)
@ Robin(mixed): w(0) + quw,(0) =0

The control design approach will depend on the type of boundary condition.
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Stability of PDEs

Heat equation

W = Wee 9)
w(0) = 0 (10)
w(l) = 0 (11)

As in finite dimension, there are two ways to analyze stability properties:
@ Find the exact solution
— Usually not possible
@ Use Lyapunov theory to show stability without solving the PDE
— There is no general Lyapunov theory for PDEs

@ For this simple plant both methods can be applied

— Not so for more complicated systems
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Lyapunov Stability

Most common Lyapunov function for PDEs is Lo spatial norm:

Lt a Ly
V=35 [ wiz)dz= Suwl (12)
2 Jo 2
Time derivative along the solutions:
L dV !
V=— = /w(w)wt(x)dm (13)
dt 0

/0 W(T)We(x)dr (Wi = Wyy) (14)
= w(@)w.(2)|§ — /1 w?(x)dz (Integration by Parts) (15)
0

1
_ _/O w(2)dz (w(0) = w(1) = 0) (16)

So the system is stable, but is it asymptotically stable? Not demonstrated yet!

Need to express [w|| in terms of [lw|.
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Integration by parts

Product Rule:

d(uwv)  du dv dv _ d(uw) du
der — dx +u£ = YT Tdz  dz’ (17)
Integrating both sides of the equation we obtain
1 1
/ u@dx = / Mdm / d—uvdx (18)
o dx o dx o dx
1
du
= o= =—wvd 1
uv|p ; 75 vde (19)
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Useful Inequalities

Young's Inequality (special case):

Y 2 1 2
< = _

Cauchy-Schwarz Inequality:

1 1 % 1 %
/ uwde( / u%m) ( / wzdx) = Juf o] (21)
0 0 0

And using Young's Inequality |Ju||[|w]| < Z|ul|* + %Hw“2

1 1 3 1 3 - 1
/ wwdz < / udz / wide) = el < Dul? + = wl? (22)
0 0 0 2 2y
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Useful Inequalities

Poincaré Inequality:
1
/ widx
0

1
/ w?dx
0

In particular, if one of the boundary conditions is zero, then

IN

1
2w?(1) +4/ w2dx (23)
0

IN

1
2w?(0) + 4 / w?dx (24)
0

[[w]l < 2[|we | (25)
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Cauchy-Schwarz Inequality

Proof of Cauchy-Schwarz Inequality:

Yy 0< (yu(z) +w(x))’ = /01 (yu(z) +w(z))’ do
Then,
V0<y/0 (x)%dz + 2y, ul dx-i—/o (z)%dx = Ay* + 2By + C
where
A= /0 )2dz, B= /0 (z)dz, C= /0 )2dax

The quadratic function f(y) = Ay?+2By-+C is non-negative for all y. The discriminant
of f(y) = 0is given by (2B)? — 4AC. It the discriminant were positive, there would be
two distinct real roots, \; < Ay, and f = A(y—X\;)(y—A2) would be negative somewhere.
When y is between \; and \,, (y — ;) is positive and (y — \2) is negative, and their
product is negative. When y is greater than both A\, and Xy, (y — A1) and (y — o) are
positive, and their product is positive. This means that the sign of f(y) must change at
y = Xo. But we have f(y) > 0!l So the discriminant cannot be positive. Therefore,

(2B)? —4AC <0 < B?*< AC
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Cauchy-Schwarz Inequality

Then
() ul@yw(z)da)” < f ule)de [ w(z)de
fu@w(@)de < | [ ulz de o)z

Another useful inequality:

1 1
2 2
va* — 2ab + —b =( ~a — |=b
~ val 5

1
va? + =b* > 2ab
Y

2
>0

Therefore,

or |
ab < la2 + b
2 2y
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Poincare Inequality

Proof of Poincare Inequality:

1 1
/ wldx = xwz\(l) — 2/ Xwwydx
0 0

= w?(1)=2 [ xwwydx
1 1
< w2(1)+§/ w2dx+2/ Pwldx
We get
1/1w2dx < w2(1)+2/ wldx
2Jo o~
1
< w2(1)+2/) wldx
Finally
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Lyapunov Stability

Back to Lyapunov function:

1
V- - / w2 (z)da (26)
0
1t . .
S 7w dx  Poincare Inequality (w(0) = w(1) = 0) (27)
0
1
< —= 2
< v (28)
Therefore
V(t) V(e o w(z,t)]| < [lw(,0)[le”"/* (29)

@ We showed that ||w|| — 0 as ¢ — co (exponential stability in Ls).

o Figure 1 illustrates demonstrated stability results.
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Typical Response
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Figure 1: Response of a heat equation to a nonsmooth initial condition.
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Lyapunov Stability

@ By using Lyapunov stability theory we predicted the overall decay of the
solution without knowledge of the exact solution w(z,t) for a specific initial
condition w0(z).

@ For PDEs, the Ly form of stability in (29) is just one of the many possible
(non-equivalent) forms of stability.

@ Lyapunov function (12) is just one of the many possible choices, a well
known feature of the Lyapunov method for ODEs.

o Nevertheless, the Ly stability, quantified by (12)) and (29), is usually the
easiest one to prove for a vast majority of PDEs, and an estimate of the form
(29) is often needed before proceeding to study stability in higher norms.

Once again, we showed that ||w| — 0 as t — oo (exponential stability in L).

This does not imply that w(z,t) — 0 as t — oo for all z. There could be
“unbounded spikes” for some x along the spatial domain (on a set of measure
zero) that do not contribute to the Lo-norm (unlikely to occur for the heat
equation as shown in Figure 1).
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Pointwise Stability

Would like to show that

max |w(x,7)| < Ke 3 max |w(x,0)]
x€[0,1] x€[0,1]

This result cannot be proved. However, it is possible to show a slightly weaker result
t
max |w(x,t)| < Ke™4||wo|q,

x€[0,1]

We define H norm as

-1 1
2 2
w = w dx+/ widx
H ||H1 /0 0 X

Note that by using Poincare inequality it is possible to drop the integral of w? for most
problems
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Agmon Inequality

Agmon Inequality
max, w(x)|?
max, w(x)[?
Proof:
[ weme@ds -

Using triangle inequality we get

1
EWZ(X)

IN

w?(x)

IN

2
xren[gxﬂ [w(x)]

IN

IN

w2(0) + 2wl | wl|

IA

w2 (1) +2[|wl] [wx

200+ [ (el bog()] e

1
2
W2(0)+2 [ () we(E)

w7(0) +2{|wl] x|
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Pointwise Stability

Back to our problem:

Wr = Wxx
w(0) = 0
w(l) 0

Let us use the Lyapunov function

1/l 1l
:5/0 w2(x)dx+§/0 w2(x)dx
1 1
/ waxdx+/ WxWexdx
0 0

1 1
wi(@lh = [ wRdx-twapwa(0d = [ weondx

<.
Il

[
5=
L]

Il
|
\_
o
QU
=
|
\_
=
&

0
1 1
< fiuwuﬁfiuwuﬁ
< gl = Sl
1
< v
- 4
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Pointwise Stability

We have
I @)1+ ()2 < 772 (Iwol 12+ lwoul )

where wy = w(x,0) is the initial condition.

Finally,
Y max_|w(x,0)> < 2|w(@)||[wx(2)]|  (Agmon inequality)
x€[0,1]
< Aw)IP + a1
<

e/ (Jlwoll? + Iwox )

We showed that the equilibrium w = 0 is asymptotically stable for all x € [0, 1].
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Exact Solutions

Exist mostly for the plants with constant parameters.

Two standard methods for finding exact solutions: separation of variables and Laplace
transform.

Separation of Variables

Heat equation with reaction:

U = Uypy+Au
u0) = 0
u(1) 0

Postulate the solution in the form u(x,7) = X (x)T(1).
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Exact Solutions

Substitute u(x,7) = X (x)T(¢) in the equation:
X()T(t) = X"(x)T (t) + MX (x)T (¢)

Divide by X (x)T (¢):
T X"+ WX
—_ = =0
T X
ODE for T':
T = oT
T = ¢% (without loss of generality)
ODE for X:

X"+(h—0)X = 0
X(0) = X(1)=0

Solution for X (x):

X (x) = Asin(\/A— 0x) + Becos(v/ h—ox)
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Exact Solution

X(x) =Asin(\/A—0x)+Bcos(v/A—0x)

X(0)=0 = B=0

X(1)=0 = Asin(v/A—0)=0
= VA—0 = mn, wheren=0,1,2,...
= o=A—n’n?

Solution

up(x,t) = Ane(}‘”‘z”z)t sin(mnx), n=0,1,2,...

Since the PDE is linear, the sum of solutions is also a solution. Therefore the formal
general solution is

u(x,t) = 2 Ane()‘_n2”2)’ sin(stnx)
n=1

To find A,, we use the knowledge of the initial condition u(x,0) = ug(x)
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Exact Solution

Setr =0 = up(x) =3, _| Apsin(mwnx)

Multiply both sides with sin(qmx) = ug(x) sin(smx) = sin(mmx) 3| Ay, sin(snx)

. . 1/2 n=
Use the orthogonality property fg sin(sumnx) sin(suax)dx = { (/) n’; mm }
to get
1 1
in(mwmx)dx = ZA
/0 ug(x) sin (romx)dx >Am
The exact solution is eigenvalues effect of initial conditions

2 - ()\,—ﬂiznz)t : ! : d
1) = b7
u(x,t) n:§1e sin(stnx) /0 sin(znx)ug (x) dx

eigenfunctions

The stability condition is A < 7. Note that it is much less conservative than the one
obtained using Lyapunov method (which gives A < 1/4).
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Exact Solutions

Example. Find values of the parameter g for which the system

ur = uxy+gu(0)
ux(0) u(1)=0

is unstable.

Let u(x,r) = €%’ X (x). Substitute this solution in the PDE to get an ODE
X" (x) —o0X = —gX(0)
which has a general solution

X (x) = Asinh(v/0x) + Beosh(v/ox) + %X(O)

To find B, letx =0:

X(0) = B+§X(O) = B=x(0) (1 _ %)

Boundary condition at x = 0 gives

X'(0)=0 = A=0
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Exact Solutions

We have

X(x) = X(0) [g + (1 - %) cosh(\/ax)]

Boundary condition at x = 1 gives
X(1)=0 = cosh(vo) = %
g—

This equation cannot be solved in closed form. But we can still find the region of stability.

Solve for g in terms of o:

_ ocosh(,/0)
cosh(y/0) —1
Take the limit o — 0:
ocosh(/0) . o(l+0/2)

_ - -2
§ O%COSh(ﬁ)—l olgbl—i-o/Z—l

Therefore, the PDE is unstable for g > 2.
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