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Nonlinear Models

In this course we will deal with nonlinear dynamical systems that are model by a
set of coupled first-order ordinary differential equations (ODE),

ẋ1 = f1(t, x1, . . . , xn, u1, . . . , up)
ẋ2 = f2(t, x1, . . . , xn, u1, . . . , up)

... =
...

ẋn = fn(t, x1, . . . , xn, u1, . . . , up)

(1)

where x1, . . . , xn denote the n states, u1, . . . , up denote the p inputs, t denotes
time and ẋi denotes the time derivative of the state xi.
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Nonlinear Models

After defining

x =


x1
x2
...
xn

 , u =


u1
u2
...
up

 , f(t, x, u) =


f1(t, x, u)
f2(t, x, u)

...
fn(t, x, u)


we can rewrite the state equation (1) as

ẋ = f(t, x, u) (2)

which may be associated with the output equation

y = h(t, x, u) (3)

where y denotes the q-dimensional output.
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Nonlinear Models

Nonlinear Control: Design control law

u = γ(t, x)

for
ẋ = f(t, x, u)

Nonlinear Analysis: We study the dynamics of the unforced system

ẋ = f(t, x)

where u has been either forced to zero or replaced by the control law γ(t, x).

ẋ = f(t, x) nonautonomous or time-varying
ẋ = f(x) autonomous or time-invariant
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Nonlinear Models

A point x = x∗ in the state space is said to be an equilibrium point if it has the
property that whenever the state of the system starts at x∗, it will remain at x∗

for all future time. For the autonomous system

ẋ = f(x) (4)

the equilibrium points are the real roots of the equation

0 = f(x) (5)

Equilibrium points can be isolated or there can be a continuum of points.
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Autonomous Systems

Consider the autonomous system

ẋ = f(x) (6)

where f : D → Rn is a locally Lipschitz map from a domain D ⊂ Rn into Rn.
Suppose x̄ = 0 ∈ D is an equilibrium point of (6).

Our goal is to characterize and study stability of the equilibrium x̄ = 0 (no loss of
generality).
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Lipschitz Condition

Lemma: Let f : [a, b]×D → Rm be continuous for some domain D ⊂ Rn.
Suppose that [∂f/∂x] exists and is continuous on [a, b]×D. If, for a convex

subset W ⊂ D, there exists a constant L ≥ 0 such that
∥∥∥∂f
∂x

∥∥∥ ≤ L on [a, b]×W ,

then f satisfies the Lipschitz condition

‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖

for all t ∈ [a, b], x ∈W and y ∈W .

The lemma indeed shows how a Lipschitz constant can be computed using
knowledge of [∂f/∂x]

C0 (Continuity)⇐ Lipschitz⇐ C1 (Continuously Differentiability)

Examples:

Lipschitz but not C1: f(x) = |x|, f(x) = sat(x).

C0 but not Lipschitz: f(x) =
√
x.
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Stability

Definition [K] 4.1: The equilibrium point x = 0 of (6) is

stable if, for each ε > 0, there is δ = δ(ε) > 0 such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε,∀t ≥ 0

unstable if not stable

asymptotically stable if it is stable and δ can be chosen such that

‖x(0)‖ < δ ⇒ lim
t→∞

x(t) = 0

The ε− δ requirement for stability takes a challenge-answer form.

Prof. Eugenio Schuster ME 450 - Control of PDE Systems Spring 2021 8 / 25



Stability

“Stability is a property of the equilibrium, not of the system”

Stability of the equilibrium is equivalent to stability of the system only when there
exists only one equilibrium (e.g., linear systems). In this case stability ≡ global
stability.

The equilibrium point x = 0 of (6) is

attractive if there is δ > 0 such that

‖x(0)‖ < δ ⇒ lim
t→∞

x(t) = 0

Example: Attractive but unstable

asymptotically stable (a.s.) if it is stable and attractive.

globally asymptotically stable (g.a.s.) if a.s. ∀x(0) ∈ Rn.
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Derivative along the trajectory

Definition: Let V : D → R be a continuously differentiable function defined in a
domain D ∈ Rn that contains the origin. The derivative of V along the trajectory
(solution) of (6), denoted by V̇ (x) is given by

V̇ (x) =

n∑
i=1

∂V

∂xi
ẋi

=

n∑
i=1

∂V

∂xi
fi(x)

= [
∂V

∂x1
,
∂V

∂x2
, . . . ,

∂V

∂xn
][f1(x), f2(x), . . . , fn(x)]T

=
∂V

∂x
f(x)
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Lyapunov Stability Theorem

Theorem [K] 4.1: Let x = 0 be an equilibrium for (6) and D ∈ Rn be a domain
containing x = 0. Let V : D → R be a continuously differentiable function, such
that

V (0) = 0 and V (x) > 0 in D − {0} (7)

V̇ (x) ≤ 0 in D (8)

Then, x = 0 is stable. Moreover, if

V̇ (x) < 0 in D − {0} (9)

then x = 0 is asymptotically stable.
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Lyapunov Stability Theorem

Lyapunov function candidate

V (0) = 0 and V (x) > 0 in D − {0}
Lyapunov function

V (0) = 0 and V (x) > 0 in D − {0}
V̇ (x) ≤ 0 in D

Lyapunov surface (level surface, level set)

{x|V (x) = c}

Figure 1: Level surfaces of a Lyapunov function.
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Lyapunov Stability Theorem

Positive definite

V (0) = 0, V (x) > 0,∀x 6= 0

Positive semidefinite

V (0) = 0, V (x) ≥ 0,∀x 6= 0

V (x) is negative (semi)definite if −V (x) is positive (semi)definite

Lyapunov Theorem
V pdf + V̇ nsdf → stable
V pdf + V̇ ndf → asymptotically stable
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Lyapunov Stability Theorem

Example [K] 4.4: Consider the pendulum equation with friction

ẋ1 = x2

ẋ2 = −
(g
l

)
sinx1 −

(
k

m

)
x2

V1(x) = a(1− cos(x1)) + (1/2)x22 ⇒ Stable.

V2(x) = a(1− cos(x1)) + (1/2)xTPx ⇒ Asympt. Stable.

Conclusion:

Lyapunov’s stability conditions are only sufficient.

V1(x) good enough to prove a.s. via LaSalle’s theorem.

Backward approach → Variable Gradient Method.
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Region of Attraction

When the origin x = 0 is asymptotically stable, we are often interested in
determining how far from the origin the trajectory can be and still converge to the
origin as t→∞. This gives rise to the definition of region of attraction (also
called region of asymptotically stability, domain of attraction, or basin).

Definition: Let φ(t, x) be the solution of (6) that starts at initial state x at time
t = 0. The, the region of attraction is defined as the set of all points x such that
limt→∞ φ(t, x) = 0

Question: Under what conditions will the region of attraction be the whole space
Rn? In other words, for any initial state x, under what conditions the trajectory
φ(t, x) approaches the origin as t→∞, no matter how large ‖x‖ is. If an a.s.
equilibrium point at the origin has this property, it is said to be globally
asymptotically stable (g.a.s.).
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Global Lyapunov Stability Theorem

Theorem [K] 4.2: Let x = 0 be an equilibrium for (6). Let V : Rn → R be a
continuously differentiable function, such that

V (0) = 0 and V (x) > 0, ∀x 6= 0 (10)

‖x‖ → ∞⇒ V (x)→∞ (11)

V̇ (x) < 0, ∀x 6= 0 (12)

Then, x = 0 is globally asymptotically stable and is the unique equilibrium point.

NOTE: It is not enough to satisfy Theorem 4.1 for D = Rn!!!
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Chetaev’s Instability Theorem

Theorem [K] 4.3: Let x = 0 be an equilibrium for (6). Let V : D → R be a
continuously differentiable function, such that V (0) = 0 and V (x0) > 0 for some
x0 with arbitrarily small ‖x0‖. Define a set

U = {x ∈ Br|V (x) > 0}

where
Br = {x ∈ Rn|‖x‖ ≤ r}.

Suppose that V̇ (x) > 0 in U . Then x = 0 is unstable.

Crucial Condition: V̇ must be positive in the entire set where V > 0.

Prof. Eugenio Schuster ME 450 - Control of PDE Systems Spring 2021 17 / 25



Chetaev’s Instability Theorem

Example [K] 4.7: Consider the second order system

ẋ1 = x1 + g1(x)

ẋ2 = −x2 + g2(x)

where g1() and g2() are locally Lipschitz functions that satisfy the inequalities

|g1(x)| ≤ k‖x‖2, |g2(x)| ≤ k‖x‖2

Use the Lyapunov function candidate V (x) = 1
2 (x21 − x22) and Chetaev’s theorem

to show that the origin is unstable.
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Chetaev’s Instability Theorem

Figure 2: The set U for V (x) = 1
2
(x2

1 − x2
2).
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Invariance Principle

Example [K] 4.4: Consider the pendulum equation with friction

ẋ1 = x2

ẋ2 = −
(g
l

)
sinx1 −

(
k

m

)
x2

We consider the Lyapunov function candidate

V (x) =
(g
l

)
(1− cosx1) +

x22
2
⇒ V̇ (x) = −

(
k

m

)
x22 ≤ 0

The energy Lyapunov function fails to satisfy the asymptotic stability condition of
Theorem 4.1.
But can V̇ (x) = 0 be maintained at x 6= 0?
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Invariance Principle

Idea: If we can find a Lyapunov function in a domain containing the origin whose
derivative along the trajectories of the system is negative semidefinite, and if we
can establish that no trajectory can stay identicaly at points where V̇ (x) = 0
except at the origin, then the origin is asymptotically stable (LaSalle’s Invariance
Principle).

Definition: A set M is (positively) invariant w.r.t. ẋ = f(x) if
x(0) ∈M ⇒ x(t) ∈M for all t ∈ R (t ∈ R+).
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Invariance Principle

Theorem [K] 4.4 (LaSalle’s Theorem): Let Ω ⊂ D be a compact set that is
positively invariant w.r.t. ẋ = f(x). Let V : D → R be a continuously
differentiable function such that V̇ (x) ≤ 0 in Ω. Let E be the set of all points in
Ω where V̇ (x) = 0. Let M be the largest invariant set in E. Then, every solution
starting in Ω approaches M as t→∞.

Note: Unlike Lyapunov’s theorem, LaSalle’s theorem does NOT require the
function V (x) to be positive definite.

Note: When we are interested in showing that x(t)→ 0 as t→∞, we need to
establish that the largest invariant set M in E is the origin, i.e., M ≡ 0.
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Invariance Principle

Corollary [K] 4.1 (4.2): Let x = 0 be an equilibrium point of ẋ = f(x). Let
V : D(Rn)→ R be a continuously differentiable (radially unbounded, positive
definite) function on a domain D containing the origin (on Rn), such that
V̇ (x) ≤ 0 in D (in Rn). Let S = {x ∈ D(Rn)|V̇ (x) = 0} and suppose that no
solution can stay identically in S, other than the trivial solution. Then, the origin
is (globally) asymptotically stable.
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Invariance Principle

LaSalle’s theorem

relaxes the negative definiteness requirement for V̇ (x) of Lyapunov’s theorem

does not require V (x) to be positive definite

gives an estimate of the region of attraction Ω which is not necessarily a level
set of V (x)

applies not only to equilibrium points but also to equilibrium sets

Example:

ẋ = −|x|x+ (1− |x|)xy

ẏ = −1

8
(1− |x|)x2
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