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Dynamic Programming

1. Bellman’s Principle of Optimality

So far we have considered the variational approach to optimal control.
We will consider now dynamic programming, which is based on
Bellman'’s principle of optimality:

An optimal policy has the property that no matter what the previous
decision (i.e., controls) have been, the remaining decisions must
constitute an optimal policy with regard to the state resulting from
those previous decisions.

The principle of optimality plays a role similar to that played by
Pontryagin’s minimum principle in the variational approach to system
control. It serves to limit the number of potentially optimal control
strategies that must be investigated. It also implies that optimal control
strategies must be determined by working backward from the final state;
the optimal control problem is inherently a backward-in-time problem.
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Example: An Aircraft Routing Problem

An aircraft can fly from left to right along the paths shown in the figure
below. Intersections a, b, ¢, ... represent cities, and the numbers represent
the fuel required to complete each path. We will use Bellman'’s principle
of optimality to solve the minimum-fuel problem with fixed final state and
constrained control and state values.

NP N

0 1 2 3 N =4

stage number (decision) k ——
ME 433 - State Space Control 218

Dynamic Programming
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u, control
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stage number (decision) f ——

» State feedback control law

* Solution by dynamic programming may not be unique
» Working forward? Not optimal!

* Any portion of an optimal path is optimal

* Bellman'’s principle of optimality has reduced the number of decisions
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2. Discrete-Time Systems

The plant is described by the general nonlinear discrete-time dynamical
equation

'xk+1 = f(ka-xk’uk), k = i,...,N—l

with initial condition x; given. The vector x, has n components and the
vector u, has m components. Suppose we associate with this plant the
performance index

N-1
Jl.(xl.) = ¢(N,xN) + EL(k,xk,uk)
k=i
where [i, N] is the time interval of interest. We want to use Bellman's
principle of optimality to find the sequence u, that minimizes the
performance index.
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Suppose we have computed the optimal cost

*®

Jk+1(xk+1)

for time k+1 to the terminal time N for all possible states x,,,, and that
we have also found the optimal control sequences from time 4+1 to N
for all possible states x,,,. The optimal cost results when the optimal
control sequences u*,,,, u*.,, ..., u*y, is applied to the plant with a
state of x,.,. Note that the optimal control sequence depends on x,,,. If
we apply any arbitrary control u, at time k£ and then use the known
optimal control sequence from k+1 on, the resulting cost will be

Jk(xk) = L(k’xk’uk) + ‘IZ+1(xk+l)

where x, is the state at time &, and x,, is given by the state equation.
According to Bellman, the optimal cost from time & is equal to

J,;(xk) = min(L(k,xk,uk) + Jk+1(xk+1))
uy,
and the optimal control u*, at time k is the u, that achieves this

minimum.
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3. Discrete LQR via Dynamic Programming
The plant is described by the linear discrete-time dynamical equation
X = AgXy + By,

with initial condition x; given and final state x, free. We want to find the
sequence u, on the interval [i,N] that minimizes the performance index:

1 1N—1
J, = Ex;SNxN +52(x,kaxk + u,{Rkuk), Sy=0,0=0,R>0
k=i

Let k=N and write

%

Jy =EX;SNXN =Jy
Now let k=N-1 and write
1

1
T T T
Sy = ExN—lQN—lxN—l + EMN—IRN—IMN—I + E'xNSNxN
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According to Bellman’s principle of optimality,
JZ(xk) = len(L(k’xk’uk) + JZ+1(xk+1))

we find u,,, by minimizing J,,,, which can be rewritten as

| 1 1 T
Jya= EXAT/-lQN-lxN-l + 5 ”1{1-1RN-1”N-1 + E(AN—IXN—I + BN-l”N-l) SN(AN—lxN—l + BN-l”N-l)

Since there is no input constraint, the minimum is found by setting

aJ

N-l _ T
0= P =Ry_y_, +BN—1SN(AN—IXN—1 +BN-1”N-1)
Uy
which gives
-(B" S.B, +R, ) B $.A
Uy = Dy dyDy T8y V-1 Ay Xy
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Defining ¥
Ky = (B;—ISNBN—I t RN—]) BATJ-lsNAN-l

we can rewrite
*
Uy ==Ky Xy

The optimal cost to go from 4=N-1 is found substituting the optimal
control in the expression for J, ,,

%

1 T T
Jya= Z'XN—I[(AN—I - BN—IKN—I) SN(AN—I - BN—IKN—I) + Ky Ry Ky + Oy oy

if we define
T
SN-l = (AN-I - BN-IKN-I) SN(AN-I - BN-lKN-l) +K17\;-1RN-1KN-1 + QN-]

this can be written as

* T
‘]N—l = EXN—ISN—IXN—I
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For k=N

T

JN = E'XNSNXN
For k=N-1 J;/
1
T T
Jya= EXN—lQN—lxN—l + 5 Uy Ry iy
For k=N-2
1 L
Iy = EXN—ZQN—ZXN—Z + 5 Uy Ry oty

The structure of the problem is the same. To obtain u*, , we just need
to replace N-1 by N-2. If we continued to decrement & and apply the
optimality principle, the result for each &=N-1, ..., 1,0 s

-1
u=-Kx, K, = (B,{SMBk +Rk) B/S, A, Kalman Gain Sequence
! T Joseph Stabilized Ricatti
5= (Ak } BkK") S"”(A" -B&, ) HKRK+ 0, Diffefence Equation (RDE)
* T
Ji = 2 X Sy Optimal Cost
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4. Continuous-Time Systems

The plant is described by the general nonlinear continuous-time
dynamical equation

& = f(t,x,u), t,<t<T

with initial condition x, given. The vector x has n components and the
vector u has m components. Suppose we associate with this plant the
performance index

J(x(1,).15) = 9(T.x(7)) + }L(t,x(t),u(t))dt

where [#,, T] is the time interval of interest. We want to use Bellman’s
principle of optimality to find the control « that minimizes the

performance index and drives the initial state to a final state satisfying

W(T.x(T)) =0
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Suppose ¢ is the current time and #+At is a future time close to ¢. Then,
the cost can be rewritten as
T t+At
J(x,t) = o(T.x(T)) + [ L(zx(@.u@)dr+ [ Llt,x(@).u(v)de
t+At t
t+At

= [L(t.x(@)u(@)dr + J(x + Ax,1 + At)

where x+ Ax is the state at time r+Ar that results when the current u(r)
and x(¢) are used in the state equation. This expression describes all
possible costs to go from time ¢ to the final time T. According to the
optimality principle, the only candidates for J*(x,f) are those costs that
are optimal from Az to T. Suppose we have computed the optimal cost

J (x+ Ax,t+ At)

for all possible states x+ Ax. Suppose also that the optimal control has
determined on the interval [t+At,T] for each x+ Ax. Then, it remains to
select the current u(¢) on the interval [ +A1].
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Hence,

]L(r,x(r),u(r))du J (x + Ax,t + At)

J'(x,t) = min
u(t) f

t<T<t+At

We perform a Taylor series expansion of J*(x + Ax,t + At ) around (x,?)
and take an approximation for the integral to write, to first order,

#\T %
J'(x,¢) = min LAt+J*(x,t)+(aJ) A+ 2
u(t) ox ot

tsTst+Ar

* «\T
=J*(x,t)+£At+ min| LAt +| % 1At
ot u(7) ox

1<T<t+A?

where we have used that, to the first order, Ax=fAt.
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Thus, ;
ar _ ar
-— At =min|LAt +|—| fAt
&t lsililrgm dx
Letting Ar— 0,
oI ) I ! Hamilton-Jacobi-Bellman
" - min L+ e f (HJB) Equation

It is solved backward in time from =T, with boundary condition
J (T, x(T)))=¢(T,x(T)) onthehypersurface y (T, x(T))=0
The HJB is usually written as

—i = min[H(x,u,i,t)], H(x,u,)»,t) = L(x,u,t) + )»Tf(x,u,t)
ot u(t) 0x

tsT=sAt
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Example:
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5. Continuous LQR via Dynamic Programming

The plant is described by the linear continuous-time dynamical
equation
& = A(t)x + B(t)u,
with initial condition x, given. We assume that the final time T is fixed
and given, and that no function of the final state y is specified. We want
to find the sequence u*(f) that minimizes the performance index:
1 17
J(,) = ExT(T)S(T)x(T) + [ (x"0(t)x + u" R(t)u)dr
)
The Hamiltonian
1 1
H = 3" Qe)x-+ u R(t)u+ A (A(r)x + B(1)u)

is minimized setting

2
";—H _R()u+ XB() =0= u =R (1)B" (1), ";—H _R(1) >0
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Then,
1 1
H = ExTQ(t)x + X A(t)x - EATBR-'(r)BTA
Setting A=/*, the HJB equation is

= %xTQ(t)x (1) Alr)x - %(J;)TBR‘l(t)BTJ;

with boundary condition

J(T) = 2 57 (1)$(1)x(7)

2
We assume that there is a symmetric matrix S(¢) such that
J(1) = %xT(t)S(t)x(t) Vi<T
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Substituting this last expression in the HJB equation yields
0- %xTS(t)x s %XTQ(I)X 2T S(1)A(1)x - %xTS(t)BR'l(t)BTS(t)x

0

" ($() +28(1)A(e) - S(r)BR™'(r)B" S(t) + O(t))x

D= N =

0

X" ($() + A" (1)S(2) + S(r)A(r) - S(t)BR™ (1) B" S(1) + O(1))x
Hence,
-S(t) = A"(1)S(¢) + S(¢)A(r) - S(¢)BR™'(¢)B" S(¢) + Q(t)  (RDE)
u'(t)=-R7'(t)B"(1)S(1)x(z)
I() = %xT(t)S(t)x(t)
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