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Dynamic Programming 
1. Bellman’s Principle of Optimality 
So far we have considered the variational approach to optimal control. 
We will consider now dynamic programming, which is based on 
Bellman’s principle of optimality: 

An optimal policy has the property that no matter what the previous 
decision (i.e., controls) have been, the remaining decisions must 
constitute an optimal policy with regard to the state resulting from 
those previous decisions.  

The principle of optimality plays a role similar to that played by 
Pontryagin’s minimum principle in the variational approach to system 
control. It serves to limit the number of potentially optimal control 
strategies that must be investigated. It also implies that optimal control 
strategies must be determined by working backward from the final state; 
the optimal control problem is inherently a backward-in-time problem. 
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Dynamic Programming 
Example: An Aircraft Routing Problem 

An aircraft can fly from left to right along the paths shown in the figure 
below. Intersections a, b, c, … represent cities, and the numbers represent 
the fuel required to complete each path. We will use Bellman’s principle 
of optimality to solve the minimum-fuel problem with fixed final state and 
constrained control and state values. 

state 

control 

stage number (decision) 
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Dynamic Programming 

state 

control 

stage number (decision) 
•  State feedback control law 
•  Solution by dynamic programming may not be unique 
•  Working forward? Not optimal! 
•  Any portion of an optimal path is optimal  
•  Bellman’s principle of optimality has reduced the number of decisions 
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Dynamic Programming 
2. Discrete-Time Systems 

The plant is described by the general nonlinear discrete-time dynamical 
equation 

  

€ 

xk+1 = f k,xk,uk( ),           k = i,…,N −1

with initial condition xi given. The vector xk has n components and the 
vector uk has m components. Suppose we associate with this plant the 
performance index  

where [i, N] is the time interval of interest. We want to use Bellman’s 
principle of optimality to find the sequence uk that minimizes the 
performance index.    

€ 

Ji xi( ) = φ N,xN( ) + L k,xk,uk( )
k= i

N −1

∑
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Dynamic Programming 
Suppose we have computed the optimal cost 

€ 

Jk+1
* xk+1( )

for time k+1 to the terminal time N for all possible states xk+1, and that 
we have also found the optimal control sequences from time k+1 to N 
for all possible states xk+1. The optimal cost results when the optimal 
control sequences u*k+1, u*k+2, …, u*N-1 is applied to the plant with a 
state of xk+1. Note that the optimal control sequence depends on xk+1. If 
we apply any arbitrary control uk at time k and then use the known 
optimal control sequence from k+1 on, the resulting cost will be 

€ 

Jk xk( ) = L k,xk,uk( ) + Jk+1
* xk+1( )

where xk is the state at time k, and xk+1 is given by the state equation. 
According to Bellman, the optimal cost from time k is equal to 

€ 

Jk
* xk( ) =min

uk
L k,xk,uk( ) + Jk+1

* xk+1( )( )
and the optimal control u*k at time k is the uk that achieves this 
minimum.  
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Dynamic Programming 
Example: 

€ 

xk+1 = xk + uk;          Ji = xN
2 +

uk
2

2k= i

N −1

∑
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Dynamic Programming 
3. Discrete LQR via Dynamic Programming 

The plant is described by the linear discrete-time dynamical equation 

€ 

xk+1 = Akxk + Bkuk,

with initial condition xi given and final state xN free. We want to find the 
sequence uk on the interval [i,N] that minimizes the performance index:  

€ 

Ji =
1
2
xN
T SN xN +

1
2

xk
TQkxk + uk

TRkuk( )
k= i

N −1

∑ ,          SN ≥ 0,Q ≥ 0,R > 0

Let k=N  and write 

€ 

JN =
1
2
xN
T SN xN = JN

*

Now let k=N-1  and write 

€ 

JN −1 =
1
2
xN −1
T QN −1xN −1 +

1
2
uN −1
T RN −1uN −1 +

1
2
xN
T SN xN
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Dynamic Programming 
According to Bellman’s principle of optimality,  

Since there is no input constraint, the minimum is found by setting 

which gives 

€ 

Jk
* xk( ) =min

uk
L k,xk,uk( ) + Jk+1

* xk+1( )( )
we find uN-1 by minimizing JN-1, which can be rewritten as 

€ 

JN −1 =
1
2
xN −1
T QN −1xN −1 +

1
2
uN −1
T RN −1uN −1 +

1
2
AN −1xN −1 + BN −1uN −1( )T SN AN −1xN −1 + BN −1uN −1( )

€ 

0 =
∂JN −1
∂uN −1

= RN −1uN −1 + BN −1
T SN AN −1xN −1 + BN −1uN −1( )

€ 

uN −1 = − BN −1
T SNBN −1 + RN −1( )−1BN −1

T SN AN −1xN −1
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Dynamic Programming 
Defining 

The optimal cost to go from k=N-1 is found substituting the optimal 
control in the expression for JN-1, 

if we define 

we can rewrite 

€ 

JN −1
* =

1
2
xN −1
T AN −1 − BN −1KN −1( )T SN AN −1 − BN −1KN −1( ) +KN −1

T RN −1KN −1 +QN −1[ ]xN −1

€ 

KN −1 = BN −1
T SNBN −1 + RN −1( )−1BN −1

T SN AN −1

€ 

uN −1
* = −KN −1xN −1

€ 

SN −1 = AN −1 − BN −1KN −1( )T SN AN −1 − BN −1KN −1( ) +KN −1
T RN −1KN −1 +QN −1

this can be written as 

€ 

JN −1
* =

1
2
xN −1
T SN −1xN −1
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Dynamic Programming 
For k=N   

€ 

JN =
1
2
xN
T SN xN

For k=N-1  

€ 

JN −1 =
1
2
xN −1
T QN −1xN −1 +

1
2
uN −1
T RN −1uN −1 +

1
2
xN
T SN xN

For k=N-2   

The structure of the problem is the same. To obtain u*N-2 we just need 
to replace N-1 by N-2. If we continued to decrement k and apply the 
optimality principle, the result for each k=N-1, …, 1, 0 is 

€ 

JN −2 =
1
2
xN −2
T QN −2xN −2 +

1
2
uN −2
T RN −2uN −2 +

1
2
xN −1
T SN −1xN −1

€ 

uk = −Kkxk,    Kk = Bk
T Sk+1Bk + Rk( )−1

Bk
T Sk+1Ak

€ 

Sk = Ak − BkKk( )T Sk+1 Ak − BkKk( ) +Kk
TRkKk +Qk

Kalman Gain Sequence 

Joseph Stabilized Ricatti 
Difference Equation (RDE) 

€ 

Jk
* =

1
2
xk
T Skxk Optimal Cost 
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Dynamic Programming 
4. Continuous-Time Systems 

The plant is described by the general nonlinear continuous-time 
dynamical equation 

with initial condition x0 given. The vector x has n components and the 
vector u has m components. Suppose we associate with this plant the 
performance index  

where [t0, T] is the time interval of interest. We want to use Bellman’s 
principle of optimality to find the control u that minimizes the 
performance index and drives the initial state to a final state satisfying    

€ 

˙ x = f t, x,u( ),           t0 < t < T

€ 

J x t0( ),t0( ) = φ T,x T( )( ) + L t,x(t),u(t)( )dt
t0

T

∫

€ 

ψ T,x T( )( ) = 0
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where x+  Δx is the state at time t+Δt that results when the current u(t) 
and x(t) are used in the state equation. This expression describes all 
possible costs to go from time t to the final time T. According to the 
optimality principle, the only candidates for J*(x,t) are those costs that 
are optimal from t+Δt to T. Suppose we have computed the optimal cost 

Dynamic Programming 

€ 

J* x + Δx,t + Δt( )

for all possible states x+  Δx. Suppose also that the optimal control has 
determined on the interval [t+Δt,T] for each x+  Δx. Then, it remains to 
select the current u(t) on the interval [t,t+Δt].  

€ 

J x, t( ) = φ T,x T( )( ) + L τ,x(τ),u(τ)( )dτ
t+Δt

T

∫ + L τ,x(τ),u(τ )( )dτ
t

t+Δt

∫

= L τ,x(τ ),u(τ )( )dτ
t

t+Δt

∫ + J x + Δx,t + Δt( )

Suppose t is the current time and t+Δt is a future time close to t. Then, 
the cost can be rewritten as 
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We perform a Taylor series expansion of J*(x +  Δx,t +  Δt ) around (x,t)  
and take an approximation for the integral to write, to first order,  

Dynamic Programming 

where we have used that, to the first order, Δx=f Δt.  

€ 

J* x, t( ) = min
u τ( )

t≤τ ≤t+Δt

L τ,x(τ),u(τ)( )dτ
t

t+Δt

∫ + J* x + Δx, t + Δt( )
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

Hence,  

  

€ 

J* x, t( ) = min
u τ( )

t≤τ ≤t+Δt

LΔt + J* x, t( ) +
∂J*

∂x
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

T

Δx +
∂J*

∂t
Δt

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

= J* x, t( ) +
∂J*

∂t
Δt + min

u τ( )
t≤τ ≤ t+Δt

LΔt +
∂J*

∂x
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

T

fΔt
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
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Dynamic Programming 

Letting Δt→ 0,  

Thus,  

  

€ 

-
∂J*

∂t
Δt = min

u τ( )
t≤τ ≤t+Δt

LΔt +
∂J*

∂x
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

T

fΔt
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

Hamilton-Jacobi-Bellman 
(HJB) Equation 

It is solved backward in time from t=T, with boundary condition  

€ 

−
∂J*

∂t
= min

u τ( )
t≤τ ≤Δt

H x,u,∂J
*

∂x
,t

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ,      H x,u,λ,t( ) = L x,u,t( ) + λT f x,u,t( )

The HJB is usually written as  

  

€ 

-
∂J*

∂t
= min

u τ( )
t≤τ ≤t+Δt

L +
∂J*

∂x
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

T

f
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
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Dynamic Programming 
Example: 
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Dynamic Programming 
5. Continuous LQR via Dynamic Programming 

The plant is described by the linear continuous-time dynamical 
equation 

€ 

˙ x = A t( )x + B t( )u,
with initial condition x0 given. We assume that the final time T is fixed 
and given, and that no function of the final state ψ is specified. We want 
to find the sequence u*(t) that minimizes the performance index:  

€ 

J t0( ) =
1
2
xT T( )S T( )x T( ) +

1
2

xTQ t( )x + uTR t( )u( )dt
t0

T

∫
The Hamiltonian 

€ 

H =
1
2
xTQ t( )x +

1
2
uTR t( )u + λT A t( )x + B t( )u( )

is minimized setting 

€ 

∂H
∂u

= R t( )u + λTB t( ) = 0⇒ u* = −R−1 t( )BT t( )λ,    ∂
2H
∂u2 = R(t) > 0
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Dynamic Programming 
Then, 

Setting λ=J*x, the HJB equation is  

with boundary condition 

€ 

H* =
1
2
xTQ t( )x + λT A t( )x − 1

2
λTBR−1 t( )BTλ

€ 

−Jt
* =

1
2
xTQ t( )x + Jx

*( )T A t( )x − 1
2
Jx
*( )T BR−1 t( )BTJx

*

€ 

J* T( ) =
1
2
xT T( )S T( )x T( )

We assume that there is a symmetric matrix S(t) such that  

€ 

J* t( ) =
1
2
xT t( )S t( )x t( )     ∀t ≤ T



10 

ME 433 - State Space Control 234 

Dynamic Programming 
Substituting this last expression in the HJB equation yields 

Hence, 

€ 

0 =
1
2

xT ˙ S t( )x +
1
2

xTQ t( )x + xT S t( )A t( )x − 1
2

xT S t( )BR−1 t( )BT S t( )x

0 =
1
2

xT ˙ S t( ) + 2S t( )A t( ) − S t( )BR−1 t( )BT S t( ) + Q t( )( )x

0 =
1
2

xT ˙ S t( ) + AT t( )S t( ) + S t( )A t( ) − S t( )BR−1 t( )BT S t( ) + Q t( )( )x

€ 

− ˙ S t( ) = AT t( )S t( ) + S t( )A t( ) − S t( )BR−1 t( )BT S t( ) + Q t( ) (RDE) 

€ 

u* t( ) = −R−1 t( )BT t( )S t( )x t( )

€ 

J* t( ) =
1
2
xT t( )S t( )x t( )


