

ME 433 – STATE SPACE CONTROL

Lecture 11

Final-time-free

1. Minimum-time Problems

One special class of final-time-free problems is defined by a performance index

$$J(t_0) = \int_{t_0}^T 1 dt$$

which arises when we are interested in minimizing the time $T-t_0$ required to make a function of the final state $\psi(x(T), T)$ zero given some initial state $x(t_0)$. The Hamiltonian is in this case

$$H(t, x, u) = 1 + \lambda^T(t) f(t, x, u)$$

Generalized boundary condition

$$(\phi_x + \psi_x^T v - \lambda)^T dx|_T + (\phi_t + \psi_t^T v + H)^T dt|_T = 0$$

Final-time-free

Case 1: The final state $x(T)$ is required to be fixed at a given value r_T . Then $dx(T)=0$. In this case,

$$\psi(T, x(T)) = x(T) - r_T = 0$$

is independent of T , and since $\phi(x(T), T)=0$ in the minimum-time problem, the boundary condition requires

$$H(T) = 0$$

if the Hamiltonian is not an explicit function of time, we must have

$$H(t) = 0 \quad \forall t \in [t_0, T]$$

Case 2: Both $x(T)$ and T are free, but they are independent. The boundary condition demands that

$$(\phi_x + \psi_x^T v - \lambda)^T dx|_T = 0 \quad (\phi_t + \psi_t^T v + H)^T dt|_T = 0$$

Final-time-free

Case 3: Both $x(T)$ and T are free, but they are dependent. An example is when the final state $x(T)$ is required to be on a specified moving point $p(t)$ at time T , but $x(T)$ and T are otherwise free. Then

$$x(T) = p(T)$$
$$dx(T) = \frac{dp(T)}{dT} dT$$

The boundary condition becomes (note that there is no $\psi(T)$, or $\psi(T)$ is identical to zero)

$$(\phi_x - \lambda)^T \frac{dp(t)}{dt} dt \Big|_T + (\phi_t + H)^T dt|_T = 0$$

Since dT is non-zero, this requires

$$(\phi_x(T) - \lambda(T))^T \frac{dp(T)}{dT} + (\phi_t(T) + H(T))^T = 0$$

Constrained Input Problems

2. Pontryagin's Minimum Principle

Let the plant

$$\dot{x} = f(t, x, u), \quad t_0 < t < T$$

Have an associated cost index of

$$J(t_0) = \phi(T, x(T)) + \int_{t_0}^T L(t, x(t), u(t)) dt$$

Where the final state must satisfy

$$\psi(T, x(T)) = 0$$

and $x(t_0)$ is given.

Constrained Input Problems

If the control is unconstrained, the optimal control problem has been already solved, where the condition for optimality was

$$\frac{\partial H}{\partial u} = \frac{\partial L}{\partial u} + \lambda^T \frac{\partial f}{\partial u} = 0, \quad H(t, x, u) = L(t, x, u) + \lambda^T(t) f(t, x, u)$$

Now suppose the control $u(t)$ is constrained to lie in an *admissible region*. It was shown by Pontryagin that the unconstrained solution still holds but the stationary condition must be replaced by the more general condition (where $*$ denotes optimal quantities)

$$H(x^*, u^*, \lambda^*, t) \leq H(x^*, u^* + \delta u, \lambda^*, t) \quad \text{all admissible } \delta u$$

or equivalently

$$H(x^*, u^*, \lambda^*, t) \leq H(x^*, u, \lambda^*, t) \quad \text{all admissible } u$$

This is Pontryagin's Minimum Principle: "The Hamiltonian must be minimized over all admissible u for optimal values of the state and costate"

Constrained Input Problems

System Properties

SUMMARY

Controller Properties

System Model

$$x(t) = f(t, x, u)$$

State Equation

$$\dot{x} = \frac{\partial H}{\partial \lambda} = f(t, x, u), \quad t \geq t_0$$

Performance Index

$$J(t_0) = \phi(T, x(T)) + \int_{t_0}^T L(t, x(t), u(t)) dt$$

Costate Equation

$$-\dot{\lambda} = \frac{\partial H}{\partial x} = \frac{\partial L}{\partial x} + \lambda^T \frac{\partial f}{\partial x}, \quad t \leq T$$

Final-state Constraint

$$\psi(T, x(T)) = 0$$

Stationary Condition

$$H(x^*, u^*, \lambda^*, t) \leq H(x^*, u, \lambda^*, t)$$

Hamiltonian

$$H(t, x, u, \lambda) = L(t, x, u) + \lambda(t) f(t, x, u)$$

Boundary Condition

$$x(t_0) \text{ given}$$

$$(\phi_x + \psi_x^T \nu - \lambda^T)^T dx|_T + (\phi_t + \psi_t^T \nu + H)^T dt|_T = 0$$

204

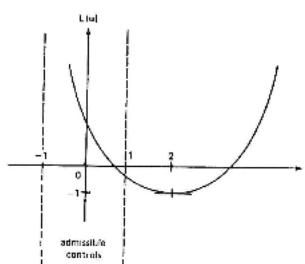
ME 433 - State Space Control

Constrained Input Problems

Example: Optimization with Constraints

$$L = \frac{1}{2} u^2 - 2u + 1$$

$$|u| \leq 1$$



ME 433 - State Space Control

205

Constrained Input Problems

2.1 Constrained Minimum-Time Problem (Bang-Bang Control)

Let the plant

$$\dot{x} = Ax + Bu$$

have an associated cost index of

$$J(t_0) = \int_{t_0}^T 1 dt$$

with T free. Where the final state must satisfy

$$\psi(T, x(T)) = 0$$

and $x(t_0)$ is given. Suppose the control is required to satisfy

$$|u(t)| \leq 1, \quad \forall t \in [t_0, T]$$

Constrained Input Problems

The Hamiltonian is in this case

$$H(t, x, u) = 1 + \lambda^T(t)(Ax(t) + Bu(t))$$

Pontryagin's principle

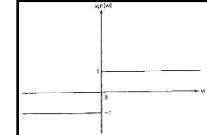
$$1 + (\lambda^*)^T (Ax^* + Bu^*) \leq 1 + (\lambda^*)^T (Ax^* + Bu)$$

$$(\lambda^*)^T Bu^* \leq (\lambda^*)^T Bu$$

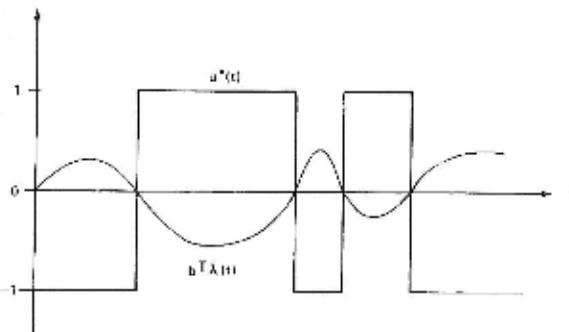
Then, we can show that

$$u^*(t) = -\text{sgn}((\lambda^*)^T B)$$

$$\text{sign}(w) = \begin{cases} 1 & w > 0 \\ \text{indeterminate} & w = 0 \\ -1 & w < 0 \end{cases}$$



Constrained Input Problems



$$u^*(t) = -\text{sgn}\left(\left(\lambda^*\right)^T B\right)$$

Constrained Input Problems

Example: Bang-Bang Control of Systems Obeying Newton's Law

Let the plant obey Newton's laws so that

$$\begin{aligned}\dot{y} &= v, \\ \dot{v} &= u\end{aligned}$$

The goal is to minimize the associated cost index (time T)

$$J(t_0) = \int_0^T 1 dt$$

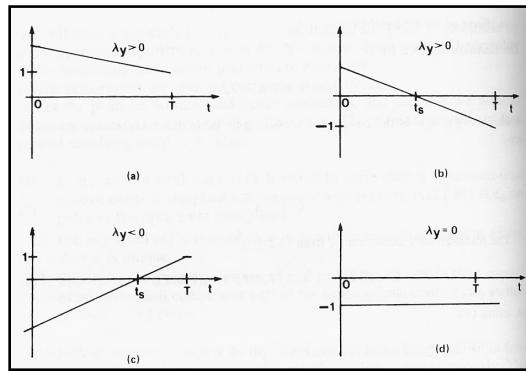
with T free. Where the final state must satisfy

$$\psi(T, x(T)) = [y(T) \quad v(T)]^T = 0$$

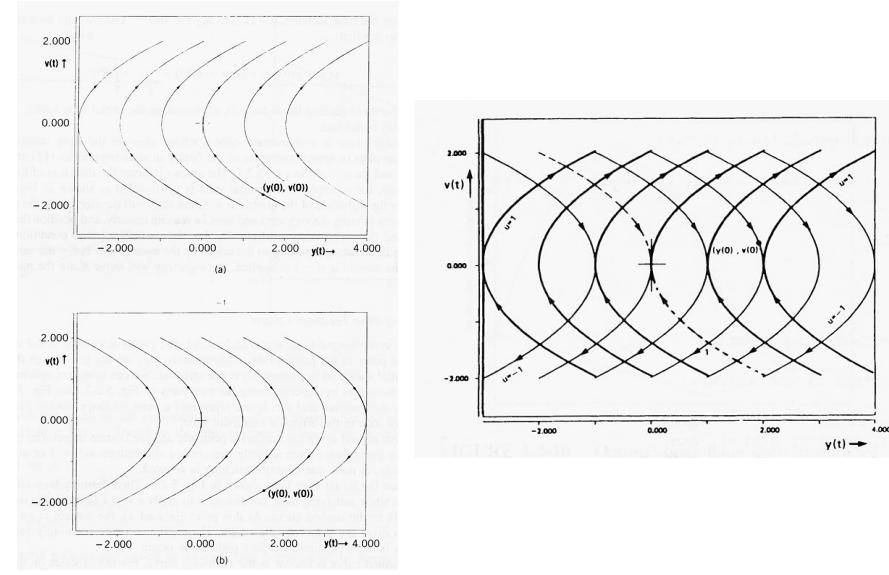
and $x(0) = [y(0) \quad v(0)]^T$ is given. Suppose the control is required to satisfy

$$|u(t)| \leq 1, \quad \forall t \in [t_0, T]$$

Constrained Input Problems



Constrained Input Problems



Constrained Input Problems

2.2 Constrained Minimum-Fuel Problem (Bang-Off-Bang Control)

Let the plant

$$\dot{x} = Ax + Bu$$

have an associated cost index of

$$J(t_0) = \int_{t_0}^T \sum_{i=1}^m c_i |u_i(t)| dt$$

with T either free or fixed. Where the final state must satisfy

$$\psi(T, x(T)) = 0$$

and $x(t_0)$ is given. Suppose the control is required to satisfy

$$|u(t)| \leq 1, \quad \forall t \in [t_0, T]$$

Constrained Input Problems

The Hamiltonian is in this case

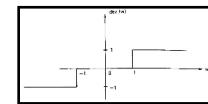
$$H(t, x, u) = C^T |u(t)| + \lambda^T(t)(Ax(t) + Bu(t))$$

$$C^T = [c_1 \ c_2 \ \dots \ c_m], |u| = [u_1 \ u_2 \ \dots \ u_m]^T$$

Pontryagin's principle

$$C^T |u^*| + (\lambda^*)^T (Ax^* + Bu^*) \leq C^T |u| + (\lambda^*)^T (Ax + Bu)$$

$$C^T |u^*| + (\lambda^*)^T Bu^* \leq C^T |u| + (\lambda^*)^T Bu$$



Then, we can show that

$$u_i^*(t) = -dez\left(\frac{b_i^T \lambda^*(t)}{c_i}\right), \quad i = 1, \dots, m$$

$$dez(w) = \begin{cases} -1 & w < -1 \\ \text{between } -1 \text{ and } 0 & w = -1 \\ 0 & -1 < w < 1 \\ \text{between } 0 \text{ and } 1 & w = 1 \\ 1 & w > 1 \end{cases}$$

Constrained Input Problems

2.3 Constrained Minimum-Energy Problem

Let the plant

$$\dot{x} = Ax + Bu$$

have an associated cost index of

$$J(t_0) = \frac{1}{2} \int_{t_0}^T u^T(t) R u(t) dt, \quad R > 0$$

with T either free or fixed. Where the final state must satisfy

$$\psi(T, x(T)) = 0$$

and $x(t_0)$ is given. Suppose the control is required to satisfy

$$|u(t)| \leq 1, \quad \forall t \in [t_0, T]$$

Constrained Input Problems

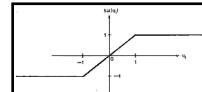
The Hamiltonian is in this case

$$H(t, x, u) = \frac{1}{2} u^T(t) R u(t) + \lambda^T(t) (Ax(t) + Bu(t))$$

Pontryagin's principle

$$\begin{aligned} \frac{1}{2} (u^*)^T R u^* + (\lambda^*)^T (Ax^* + Bu^*) &\leq \frac{1}{2} u^T R u + (\lambda^*)^T (Ax^* + Bu) \\ \frac{1}{2} (u^*)^T R u^* + (\lambda^*)^T B u^* &\leq \frac{1}{2} u^T R u + (\lambda^*)^T B u \end{aligned}$$

Then, we can show that



$$u_i^*(t) = -\text{sat}\left(\left[R^{-1}B^T \lambda(t)\right]_i\right), \quad i = 1, \dots, m$$

$$\text{sat}(w) = \begin{cases} 1 & w > 1 \\ w & |w| < 1 \\ -1 & w < -1 \end{cases}$$