ME 433 — STATE SPACE CONTROL

Lecture 11
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Final-time-free

1. Minimum-time Problems

One special class of final-time-free problems is defined by a
performance index
T
(1) = [1ar
)

which arises when we are interested in minimizing the time 7-¢, required
to make a function of the final state y(x(7),7) zero given some initial
state x(z,). The Hamiltonian is in this case

H(t,x,u) =1+ X (1) £ (t,x,u)
Generalized boundary condition
(¢X +ylv - )\.)T dxl,. + (¢, +y v+ H)T dt, =0
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Final-time-free

Case 1: The final state x(7) is required to be fixed at a given value r;.
Then dx(7)=0. In this case,

W(T,x(T)) = x(T) -1, =0

is independent of 7, and since ¢(x(7),7)=0 in the minimum-time problem,
the boundary condition requires

H(T)=0
if the Hamiltonian is not an explicit function of time, we must have
H(t)=0 Vi€|r,T]

Case 2: Both x(7) and T are free, but they are independent. The
boundary condition demands that

(¢x +PLv - )»)T dx|, =0 (¢, +Pl v+ H)T dtl, =0
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Final-time-free

Case 3: Both x(7) and T are free, but they are dependent. An examples
is when the final state x(7) is required to be on a specified moving point
p(t) at time T, but x(7) and T are otherwise free. Then

x(T) = p(T)
dx(T) = (1) dT
dT

The boundary condition becomes (note that there is no y(7), or y(7) is
identical to zero)
r dp(1)

(9.~ 2) s +(,+H) di, =0

T

Since dT is non-zero, this requires

(0.1)- 1) ) (4, ()4 () -0
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Constrained Input Problems

2. Pontryagin’s Minimum Principle

Let the plant
X =f(t,x,u), t,<t<T

Have an associated cost index of
T
(1) = o(T.x(T)) + [ L(t.x(0),u(r))dr

Where the final state must satisfy

w(T,x(T)) =0

and x(¢,) is given.
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Constrained Input Problems

If the control is unconstrained, the optimal control problem has been
already solved, where the condition for optimality was

OH _OL 0¥ 0 H(r ) = L(tx)+ 4 (1) ftx0)
Ju Ju Ju

Now suppose the control u(f) is constrained to line in an admissible
region. It was shown by Pontryagin that the unconstrained solution still
holds but the stationary condition must be replaced by the more
general condition (where * denotes optimal quantities)

H(x*,u*,)f,t) < H(x*,u* + 5u,)t*,t) all admissible du
or equivalently
H(x*,u*,)n*,t) < H(x*,u,)n*,t) all admissible u

This is Pontryagin’s Minimum Principle: “The Hamiltonian must be
minimized over all admissible u for optimal values of the state and
costate”
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Constrained Input Problems
System Properties Controller Properties

System Model State Equation
x(1) = £ (t.x.0) X = M _ (t,x,u), t=t
a)\, 9V ’ =%

Performance Index Costate Equation

Hto) = (T x(D) + [ Llex(ou)dr 5 oH L of
to 0x 0x dx

Stationary Condition

, t=<T

Final-state Constraint
W(T.x(T)) =0
Hamiltonian

H(t,x,u,A) = L(t,x,u) + A(t) f (¢,x,u)

H(x*,u*,)u*,t) < H(x*,u,A*,t)
Boundary Condition
x(to) given

(¢x +1Pyv - )»T)T dxl. + (‘/’; +Y v+ H)T dtl, =0
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Constrained Input Problems

Example: Optimization with Constraints

L=%u2—2u+l T
" \ﬁ /
= !
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Constrained Input Problems

2.1 Constrained Minimum-Time Problem (Bang-Bang Control)

Let the plant
X =Ax+ Bu

have an associated cost index of
T
J(t,) = [1ar
fy
with T free. Where the final state must satisfy

w(T,x(T)) =0

and x(¢,) is given. Suppose the control is required to satisfy
lu(r)| <1, Vi€|r,.T]
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Constrained Input Problems

The Hamiltonian is in this case
H(t,x,u) = 1+ A7 (1) Ax(r) + Bu(r))
Pontryagin’s principle

1+(%) (Ax"+Bu’) s 1+ (%) (Ax" +Bu)

()L*)T Bu < ()\.*)TBM

Then, we can show that

1 w >0

* \T
u (l‘) = —sgn(()» ) B) sign(w) ={indeterminate w =0
-1 w<0
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Constrained Input Problems
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u(t)=- sgn(()f)r B)
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Constrained Input Problems

Example: Bang-Bang Control of Systems Obeying Newton’s Law

Let the plant obey Newton's laws so that

y=v,
vV=u
The goal is to minimize the associated cost index (time 7)
T
J(t,) = [1ar
0
with T free. Where the final state must satisfy
T
W(T.x(7)) =[y(T) v(T)] =0
and x(0)=[»(0) v(0)]T is given. Suppose the control is required to satisfy
u(r) <1, Vr€[t,.T]
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Constrained Input Problems
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Constrained Input Problems

" . S
I
2.000 | - - 3 J
| A P -
it . //
7o g
/ / /
0.000 | ( / [
[\ N\ NN \
\ N N AN
LN DS TN TN N
\\\ (0%, vio)
~2.000 TN e
L —— =
~2.000 0.000 2.000 ygp-, 4.000
@
2.000 N = <
‘ ST i B B
v T NG \ TN
N \ \
{ \
0.000 |
// i //;
v AR A
% 7 /t/ym). oy l

ool A e
L Bl oo
T _2000 | 0000 2000  y- 4000
®

ME 433 - State Space Control

211




Constrained Input Problems

2.2 Constrained Minimum-Fuel Problem (Bang-Off-Bang Control)

Let the plant

X =Ax+Bu

have an associated cost index of

T m
I(ty) = [ D fu(t)dr
ty i=l
with T either free or fixed. Where the final state must satisfy

w(T,x(T)) =0

and x(¢,) is given. Suppose the control is required to satisfy

lu(r)| <1, Vi€|r,.T]
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Constrained Input Problems

The Hamiltonian is in this case

H(t,x,u) = CT|u(t)| + )LT(I)(Ax(t) + Bu(t))

CT=[Cl c, cm],

u

Pontryagin’s principle

= [|”1| |”2|

T
a

CT‘u*‘+()f)T(Ax* +Bu*) < CT|M|+()\.*)T(A.X* + Bu)

*®

CT

+()L*)TBM* sCT|u|+(A*)TBu {

u
Then, we can show that -1 w< -1
* between —1and 0 w=-1

. bIA(2)) .
ui(t)=—dez —, i=1....m dez(w) = 0 -l<w<l
¢; between 0 and 1 w=1
1 w>1
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Constrained Input Problems

2.3 Constrained Minimum-Energy Problem

Let the plant
X =Ax+ Bu

have an associated cost index of

J(t,) = %juT(t)Ru(t)dt, R>0

with T either free or fixed. Where the final state must satisfy

w(T,x(T)) =0

and x(¢,) is given. Suppose the control is required to satisfy
lu(r)| <1, Vi€|r,.T]
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Constrained Input Problems

The Hamiltonian is in this case
H(t,x.u) = %uf(t)mt(t) + 27 (1) Ax(r) + Bul1))

Pontryagin’s principle

%(u*)TRu* +(2) (Ax + Bu') < %R +(2) (Ax" + Bu)

%(u*)TRu* + (A*)TBu* < %MTRM+()\,*)TBM

Then, we can show that R

1 w>1
I/ti*(t) = _Sat([R_lBT?»(t)]i), i= 1’. .m sat(w) =W \w\ <1
-1 w<-]
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