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ME 433 - State Space Control

Continuous Dynamic Optimization

1. Distinctions between continuous and discrete systems

1- Continuous control laws are simpler
2- We must distinguish between differentials and variations in a quantity

2. The calculus of variations

If x(¢) is a continuous function of time ¢, then the differentials dx(¢) and dt
are not independent. We can however define a small change in x(¢) that is
independent of dt. We define the variation ox(f), as the incremental
change in x(f) when time ¢ is held fixed.

|What is the relationship between dx(¢), dt, and ox(£)? |
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Continuous Dynamic Optimization

Final time variation: dx(T) = ox(T) + x(T)dT

x(t)

dT

to T T+aT

Leibniz’s rule: j(x) = fh(x(t),t)dt

Iy

dJ = h(x(T).T)dT - h(x(t,).t, )dr, + }[hj(x(t),z)ax]dt
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Continuous Dynamic Optimization

3. Continuous Dynamic Optimization

The plant is described by the general nonlinear continuous-time time-
varying dynamical equation

)'c=f(t,x,u), ty<t<T

with initial condition x, given. The vector x has n components and the
vector u has m components.

The problem is to find the sequence «"(¢) on the time interval [#,,7] that
drives the plant along a trajectory x*(f), minimizes the performance
index

It )= 9@ x(T)+ [LGx(0).u(t) it
and such that "
(T, x(T))=0
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Continuous Dynamic Optimization

We adjoin the constraints (system equations and terminal constraint) to
the performance index J with a multiplier function A(f) € R” and a
multiplier constant v €R? .

(1) = B () v () [T 0) 7 0) )~ )

fy

For convenience, we define the Hamiltonian function

H(t,x,u)= L(t,x,u)+ A (t)f(t, x,u)
Thus,

J(t,) = 9(T,x(T)) +v"p(T,x(T)) + }[H(t,x(t),u(t),A(t)) - )f(t)jc]dt
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Continuous Dynamic Optimization

We want to examine now the increment in J due to increments in all
the variables x, 4, v, u and ¢. Using Leibniz’s rule, we compute

di(1,) = (¢, +w!v) dal, +(@, +y!v)dd, +y"| dv
+(H - X&), -(H - X x)di],
T
+f [Hj &x + H ou - A6k + (H, - x)Tax]dz
Iy T T
We integrate by parts, f)t%jcdt = AT6x|T - )LT(SxL —f/'iT(Sxdt, to obtain

f )
di(t,) = (¢x +yplv - )»T)T dx|,. + (q), +p v+ H-Nx+ AT)'c)dt|T
' | dv —(H - N+ Xk)dt], + N dx|,

+} [(Hx + )L)Téx + Hiéu + (HA - X)T(S}»]dt dx(t) = 6x(t) + )'c(t)dt
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Continuous Dynamic Optimization

We assume that ¢, and x(¢,) are both fixed and given, then dt, and dx(¢,)
are both zero. According to the Lagrange theory the constrained
minimum of J is attained at the unconstrained minimum of J . This is
achieved when 4j =0 for all independent increments in its arguments.
Then, the necessary conditions for a minimum are:

¥, =0

H -i=0=i=H, =f

H +i=0=-A=H =L +Xf,
H =L +Xf =0

}Two-point Boundary-value Problem

(0, +vlv =) d, + (¢, +y/v+H) di, =0

The initial condition for the Two-point Boundary-value Problem is the
known value for x,. For a fixed 7, the final condition is either a desired
value of x(7) or the value of A (T) given by the last equation. This
equation allows for possible variations in the final time 7 — minimum
time problems.
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Continuous Dynamic Optimization
System Properties Controller Properties

System Model State Equation

x(t)= f(t,x,u)

Performance Index

. 0H
x=a=f(t,x,u), t=t,

2 Costate Equation
T0) =9 )+ fLlxOuwli 5 o oL e of
A ox  ox ox’

t=<T

Final-state Constraint Stationary Condition

T, x(T'))=0

y(7,x(T)) OH oL rdf
Hamiltonian du Ou ou

H(l‘,x,u,)\,): L(t, x,u)+ A’(t)f(t’ x’u) BOUI‘ldary Condlition

x(to) given

(¢x +YLv - ?LT)T dxl,. + (qﬁt + v+ H)T dil, =0
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Continuous Dynamic Optimization

The time derivative of the Hamiltonian is
H=H +H x+H i+ f
=H, +Hfu+(Hx +)Jf
If u(¢) is an optimal control, then

H=H,

In the time-invariant case, f and L, and therefore H, are not explicit
functions of time.

H=0

Hence, for time-invariant systems and cost functions, the Hamiltonian is
a constant on the optimal trajectory.
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Continuous Dynamic Optimization

4. Hamilton’s Principle in Classical Dynamics

For a conservative system in classical mechanics, "“of all possible paths
along which a dynamical system may move from one point to another
within a specified time interval (consistent with any constraints), the
actual path followed is that which minimizes the time integral of the
difference between the kinetic and potential energies”

A- Lagrange'’s Equation of Motion:

q generalized coordinate vector (state)
u=gq generalized velocities (dynamics)

U (q) potential energy

T(q,u) kinetic energy

L(q,u)= T(q,u)— U(q) Lagrangian of the system
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Continuous Dynamic Optimization

Plant: g=u= f(Q,u)

T
Performance index: J(O)=fL(q,u)dt
0

Hamiltonian: H=L+Xu
Costate Equation: i 90 oL

ostate Equation: P % i%_
Stationary Condition: oH = oL +A=0 Lagrange Equation

du du (Mechanics)

Euler’s Equation
(Variational Problems)

In this case, the condition A =0 is a statement of conservation of energy
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Continuous Dynamic Optimization

B- Hamilton’s Equation of Motion:

. oL
Generalized momentum: A=—-—n (Stationary Condition)

dq

Then, the equations of motion can be written in Hamilton’s form:

g = ﬂ (State Equation)
oA
)= ﬁ (Costate Equation)
oq

Hence, in the optimal control problem, the state and costate equations
are a generalized formulation of Hamilton’s equations of motion
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Continuous Dynamic Optimization

Examples:
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Continuous Dynamic Optimization

5. Linear Quadratic Regulator (LQR) Problem

The plant is described by the linear continuous-time dynamical
equation
& = A(t)x + B(t)u,

with initial condition x, given. We assume that the final time T is fixed
and given, and that no function of the final state y is specified. We want
to find the sequence u*(¢) that minimizes the performance index:

1 17
J(1,) = ExT(T)S(T)x(T) + f (x"O(t)x + u" R(t)u)dr
Linear because of the system dynamics
Quadratic because of the performance index

Regulator because of the absence of a tracking objective---we are
interested in regulation around the zero state.
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Continuous Dynamic Optimization

We adjoin the system equations (constraints) to the performance index
J with a multiplier sequence A(¢) €R".

j(to) = ;xT(T)S(T)x(T) + ;}[xTQ(t)x +u" R(t)ux + )»T(A(t)x +B(t)u - )'c)]a’t

We define the Hamiltonian
H(t) = x"Q(r)x + u" R(e)ui + A (A(1)x + B(r)u)

Thus, the necessary conditions for a stationary point are:

X = % = A(t)x + B(t)u State Equation
k= %—H =0x+ AT(I))» Costate Equation
X

oH

o = Ru+ B"A=0= |u(t)=-R'B"A(t) | Stationary Condition
u
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Continuous Dynamic Optimization

We must solve the Two-point Boundary-value Problem
oH
A

i =—=A(t)x-B(t)R"'B"(1)A(r)

29 Ox + A" (1)A
0x

for #y=<t < T, with boundary conditions
x(to )= Xo

We will solve this system for two special cases:

1- Fixed final state  — Open loop control

2- Free final state  — Closed loop control
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Continuous Dynamic Optimization

5.1 Fixed-Final State and Open-Loop Control
i = A(t)x +B(t)u, x(T)=r,

J(fo)%}m(t),dt

If 0=0, the problem is intractable analytically. The Two-point Boundary-
value Problem is now simplified:

H H
i g BRBA i= g BRBTA
oA oA
=
. H . H
A= o aa Ay
ox ox
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Continuous Dynamic Optimization

The costate equation is decoupled from the state equation, and it has
an easy solution:

do=—A"A=|A()=e* TOAT)

We replace A in the state equation and solve:

t
x=Ax- BR"BTeAT(T"))L(T)= x(t)= el )xo —feA(T”)BR'lBTeAT(T")A(T)dr
)

We solve now for A(7):
T

A(T) =" x, ~ [ " BRB e " drA(T) = 1,

Ty ;
A'(T) = —GEI(IO,T)(rT —eA(T‘I“)xO) G, (to’T)=feA(T—T)BR—lBTeAT(T—r)d_E

1
Weighted Cconntrollability Gramian of [4,B]
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Continuous Dynamic Optimization

Summary:

T
GC(Z‘O,T) = feA(T-T)BR—lBTeAT(T_T)dr

Iy

The inverse of the gramian G(¢,,7) exits if and only if the system is
controllable.
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Continuous Dynamic Optimization

5.2 Free-Final-State and Closed-Loop Control

5= A(0)x + B()uJ(1,) - ;xT(T)S(T)x(T) . ;}(xTQ(t)x + " R{t)u)d

The Two-point Boundary-value Problem is:

X = o _ Ax-BR'B" A
By

-;L=ﬁ=Qx+AT;L

ox

0
We need [a_¢

_)LT(T)}delr —0= )HT):%T _ X (T)s(r)

T

Let us assume that this relationship holds for all #,<t<T (Sweep Method)

M) = S(¢)x(z)
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Continuous Dynamic Optimization

We differentiate the costate and use the state equation,
A =8x+ Sk = $x + S(Ax - BR"'B" x)
We use now the costate equation,
~(Qx + A" Sx) = $x + S(Ax - BR™'B" Sx)
~§x =(A"S+SA-SBR'B"S +Q)x
Since this must hold for any trajectory x,
-S=A"S+SA-SBR'B"S+0 Ricatti Equation (RE)

The optimal control is given by,

u(t) = —R™'B" Sx(t) = -K(¢)x(1) Feedback Control!!!
K(t)=R'B"S(z) Kalman Gain
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Continuous Dynamic Optimization

This expresses u as a time-varying, linear, state-variable, feedback
control. The feedback gain K is computed ahead of time via S, which is
obtained by solving the Riccati equation backward in time with terminal
condition Sj.

Similarly to the discrete-time case, it is possible to rewrite the cost
function as

(1) = 2 1)), -2 [R7B S f a

If we select the optimal control, the value of the cost function for 7;<t < T
is just
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Continuous Dynamic Optimization

Examples:
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Steady-State Feedback

6. Steady-State Feedback for discrete-time systems

The solution of the LQR optimal control problem for discrete-time
systems is a state feedback of the form

u, =-K,x,
where

K, =(R+B'S,,B) B'S, A
S, =A"S, A-A"S, B(B'S, ,B+R) B'S,A+Q

The closed-loop system is time-varying!!!
X0 =(A-BK)x,
What about a suboptimal constant
feedback gain?
u, =-Kx, =-K_x,
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Steady-State Feedback

6.1 The Algebraic Riccati Equation (ARE)

T T T -1 or
S, =A"S,,A-A"S,, B(B"S,,B+R) B'S,,A+Q ROE
Let us assume that when k£ — -, the sequence S, converges to a

steady-state matrix S,.. If S, does converge, then S, =S,,, =S. Thus, in
the limit

S = AT[S - SB(B"SB + R)‘lBTS]A +0 ARE

The limiting solution S, is clearly a solution of the ARE. Under some
circumstances we may be able to use the following time-invariant
feedback control instead of the optimal control,

u, =-K_x,
K. =(R+B'S.B) B'S.A
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Steady-State Feedback

1- When does there exist a bounded limiting solution S, to the Ricatti
equation for all choices of S,?

2- In general, the limiting solution S, depends on the boundary
condition S,. When is S, the same for all choices of S,?

3- When is the closed-loop system (u,=-K .x, ) asymptotically stable?

Theorem: Let (4, B) be stabilizable. Then, for every choice of S there
is a bounded solution S, to the RDE. Furthermore, S, is a positive
semidefinite solution to the ARE.

Theorem: Let C be a square root of the intermediate-state weighting
matrix, so that O=C’C=0, and suppose R>0. Suppose (4, C) is
observable. Then, (4, B) is stabilizable if and only if:

a- There is a unique positive definite limiting solution S, to the RDE.
Furthermore, S, is the unique positive definite solution to the ARE.

b- The closed-loop plant
X =(A-BK,)x,

-1
is asymptotically stable, where K is given by K, = (R + BTSWB) B'S A
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Steady-State Feedback

7. Steady-State Feedback for continuous-time systems

The solution of the LQR optimal control problem for continuous-time
systems is a state feedback of the form

u(t) = -K(1)x(z)

where
K(t)=R'B"S(t)
-S=A"S+SA-SBR'B"S+Q

The closed-loop system is time-varying!!!
i(r) =(A - BK(r))x(7)

What about a suboptimal constant
feedback gain?
u(t) = -K(t)x(t) = =K x(¢)
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Steady-State Feedback

7.1 The Algebraic Riccati Equation (ARE)

-S=A"S+SA-SBR'B'S+0Q RDE

Let us assume that when ¢ —-o, the sequence S(¢) converges to a
steady-state matrix S,.. If S(f) does converge, then dS/dt =0. Thus, in the
limit

0=A"S+SA-SBR'B"S+Q ARE

The limiting solution S, is clearly a solution of the ARE. Under some
circumstances we may be able to use the following time-invariant
feedback control instead of the optimal control,

u=-K_x
K,=R'B'S,
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Steady-State Feedback

1- When does there exist a bounded limiting solution S, to the Ricatti
equation for all choices of S(7)?

2- In general, the limiting solution S, depends on the boundary
condition S(7). When is S, the same for all choices of S(7)?

3- When is the closed-loop system (u=-K.x) asymptotically stable?

Theorem: Let (4, B) be stabilizable. Then, for every choice of S(T) there
is a bounded solution S, to the RDE. Furthermore, S, is a positive
semidefinite solution to the ARE.

Theorem: Let C be a square root of the intermediate-state weighting
matrix O, so that O0=C’C=0, and suppose R>0. Suppose (4, C) is
observable. Then, (4, B) is stabilizable if and only if:

a- There is a unique positive definite limiting solution S, to the RDE.
Furthermore, S, is the unique positive definite solution to the ARE.

b- The closed-loop plant
i=(A-BK,)x

is asymptotically stable, where X is given by K, = R™'B’S,
ME 433 - State Space Control 187

Steady-State Feedback

Examples:
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Receding Horizon LQ Control

8. Receding Horizon LQ Control
So far we have seen two kinds of LQ control problems:

Finite Horizon: Finite duration, time-varying solution (even for time
invariant systems), solutlon via RDE no stability properties necessary.

Discrete time:  J _EXNS Xy+— E(kukxk +u, R, uk)
S, =Al'S, A, - A,ZSMB,{(B,ZS,MB,( +R) BIS.A+0,
u, = (R, +BIS,.B.) BIS, ,Ax,
Continuous time: J(1,) = %xT(T)S(T)x(T) ; [ (¥ 0(1)x + " R(t)u)ar
~S=A"S+SA-SBR'B"S+Q '

u(t) = -R(1)" B(2)" S(t)x(¢)
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Receding Horizon LQ Control

Infinite Horizon: Infinite duration, time invariant solution (for LTI
systems + QTI cost), solution via ARE, stability via detectability.

1 o0
Discrete time: J=— x"Ox, +u' Ru
2;( K OX + U k)

S, = AT[SOO ~S.B(B'S.B+ R)_IBTSOO]A +0

~(R+B"S.B) B'S,Ax,

Continuous time: J = ;_{(x o(t)x+u" (t)u)dt

0=A"S,+S,_A-S_BR'B"S_+0Q
u(t) = -R'B"S_x(¢)
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Receding Horizon LQ Control

Receding Horizon: At each time i (discrete) or ¢ (continuous) we solve
a finite horizon problem

Discrete time:
1 13
= 5'x1+NS 'x1+N EE( l+ka i+k + ul+kR ul+k)
k=0
T T T Lo
Se = AcSinAc — A Sk+lBk(Bk SeaBi + Rk) BiSinAc+Q O<k=N-1I
u, =R, +BIS,B) BS,Ax,

Continuous time:
T

J(t)=;xT(t+T x(t+7)+ f( t+r t+r)+u(r+r) R(r)u(t+r))dr
0
-S=A"S+SA-SBR'B"S+Q O<t<T
u(t) = =R(t)" B(t) $(0)x(r)
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Receding Horizon LQ Control
Past Future Predictions
Closed-loop state f—
______ L :__,‘ Open-loop input
C 105;5:12)-6;’; nput J \ .
t r‘+5 H‘-Tp
| N|
! Prediction horizon T, L
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Receding Horizon LQ Control

Receding Horizon: At each time i (discrete) or ¢ (continuous) we solve
a finite horizon problem

+ An infinite-horizon strategy — we need to understand its stabilization
properties

» Time-invariant for LTI problems

» Capable of working in the nonlinear, constrained context, using explicit
optimization
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Receding Horizon LQ Control

We define now the Fake Algebraic Riccati Equation (FARE)

Discrete time:

u,=~(R,+BIS,B) BIS,Ax,

S, = ATS A~ ATS, \B(BS, B +R,) B'S. A +0, 0<ksN-1
-

-1 -
Sen = ArSiaA, - AIZSkHBk(BlZSkHBk + Rk) B; S . A +0,

O, =0, +S,., -5

We can study the stability properties of the Receding Horizon control as
an Infinite Horizon control with a new Q (detectability + monotonicity).
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