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Lecture 10 
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Continuous Dynamic Optimization 
1. Distinctions between continuous and discrete systems 

1- Continuous control laws are simpler 
2- We must distinguish between differentials and variations in a quantity 

2. The calculus of variations 

If x(t) is a continuous function of time t, then the differentials dx(t) and dt 
are not independent. We can however define a small change in x(t) that is 
independent of dt. We define the variation δx(t), as the incremental 
change in x(t) when time t is held fixed. 

What is the relationship between dx(t), dt, and δx(t)? 
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Continuous Dynamic Optimization 
Final time variation: 

Leibniz’s rule: 

€ 

dx T( ) = δx T( ) + ˙ x T( )dT

€ 

J(x) = h x(t),t( )dt
t0

T

∫

dJ = h x T( ),T( )dT − h x t0( ),t0( )dt0 + hx
T x(t), t( )δx[ ]dt

t0

T

∫
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Continuous Dynamic Optimization 
3. Continuous Dynamic Optimization 

The plant is described by the general nonlinear continuous-time time-
varying dynamical equation 

with initial condition x0 given. The vector x has n components and the 
vector u has m components.  

The problem is to find the sequence u*(t) on the time interval [t0,T] that 
drives the plant along a trajectory x*(t), minimizes the performance 
index    

and such that   
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Continuous Dynamic Optimization 
We adjoin the constraints (system equations and terminal constraint) to 
the performance index J with a multiplier function λ(t) ∈ Rn and a 
multiplier constant ν ∈ Rp . 

For convenience, we define the Hamiltonian function 

Thus, 
€ 

J t0( ) = φ T,x T( )( ) +ν Tψ T,x T( )( ) + L t, x(t),u(t)( ) + λT t( ) f t, x,u( ) − ˙ x ( )[ ]dt
t0

T

∫

€ 

J t0( ) = φ T,x T( )( ) +ν Tψ T,x T( )( ) + H t, x(t),u(t),λ t( )( ) − λT t( ) ˙ x [ ]dt
t0

T

∫
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Continuous Dynamic Optimization 
We want to examine now the increment in     due to increments in all 
the variables x, λ, ν, u and t. Using Leibniz’s rule, we compute 

We integrate by parts,                                                                 , to obtain 

€ 

dJ t0( ) = φx +ψx
Tν( )T

dx T + φt +ψ t
Tν( )dt T +ψT

T
dν

+ H − λT ˙ x ( )dt T − H − λT ˙ x ( )dt t0

+ Hx
Tδx + Hu

Tδu − λTδ˙ x + Hλ − ˙ x ( )T
δλ[ ]dt

t0

T

∫

€ 

dJ t0( ) = φx +ψx
Tν − λT( )T

dx T + φt +ψ t
Tν + H − λT ˙ x + λT ˙ x ( )dt T

+ψT
T

dν − H − λT ˙ x + λT ˙ x ( )dt t0
+ λT dx t0

+ Hx + ˙ λ ( )
T
δx + Hu

Tδu + Hλ − ˙ x ( )T
δλ

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ dt

t0

T

∫

€ 

dx t( ) = δx t( ) + ˙ x t( )dt
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Continuous Dynamic Optimization 
We assume that t0 and x(t0) are both fixed and given, then dt0 and dx(t0) 
are both zero. According to the Lagrange theory the constrained 
minimum of J is attained at the unconstrained minimum of    . This is 
achieved when            for all independent increments in its arguments. 
Then, the necessary conditions for a minimum are: 

€ 

ψ T = 0
Hλ − ˙ x = 0⇒ ˙ x = Hλ = f

Hx + ˙ λ = 0⇒ − ˙ λ = Hx = Lx + λT fx

Hu = Lu + λT fu = 0

φx +ψx
Tν − λT( )T

dx T + φt +ψ t
Tν + H( )T

dt T = 0

Two-point Boundary-value Problem 

The initial condition for the Two-point Boundary-value Problem is the 
known value for x0. For a fixed T, the final condition is either a desired 
value of x(T) or the value of λ (T) given by the last equation. This 
equation allows for possible variations in the final time T → minimum 
time problems.  

ME 433 - State Space Control 166 

Continuous Dynamic Optimization 
SUMMARY System Properties Controller Properties 

System Model 

Performance Index 

Final-state Constraint 

State Equation 

Costate Equation 

Stationary Condition 

Boundary Condition 

€ 

x t0( )  given

φx +ψx
Tν − λT( )T dx T + φt +ψ t

Tν +H( )T dt T = 0

Hamiltonian 
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Continuous Dynamic Optimization 
The time derivative of the Hamiltonian is 

In the time-invariant case, f and L, and therefore H, are not explicit 
functions of time. 

If u(t) is an optimal control, then 

Hence, for time-invariant systems and cost functions, the Hamiltonian is 
a constant on the optimal trajectory.  
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Continuous Dynamic Optimization 

For a conservative system in classical mechanics, “of all possible paths 
along which a dynamical system may move from one point to another 
within a specified time interval (consistent with any constraints), the 
actual path followed is that which minimizes the time integral of the 
difference between the kinetic and potential energies” 

A- Lagrange’s Equation of Motion: 

generalized coordinate vector (state) 

generalized velocities (dynamics) 

potential energy  

kinetic energy 

Lagrangian of the system 

4. Hamilton’s Principle in Classical Dynamics 
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Continuous Dynamic Optimization 
Plant: 

Hamiltonian: 

Performance index: 

Costate Equation: 

Stationary Condition: Lagrange Equation 
(Mechanics) 

Euler’s Equation 
(Variational Problems) 

In this case, the condition          is a statement of conservation of energy 
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Continuous Dynamic Optimization 

Then, the equations of motion can be written in Hamilton’s form: 

Generalized momentum: (Stationary Condition) 

Hence, in the optimal control problem, the state and costate equations 
are a generalized formulation  of Hamilton’s equations of motion 

B- Hamilton’s Equation of Motion: 

(State Equation) 

(Costate Equation) 
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Continuous Dynamic Optimization 
Examples:    
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Continuous Dynamic Optimization 
5. Linear Quadratic Regulator (LQR) Problem 

The plant is described by the linear continuous-time dynamical 
equation 

€ 

˙ x = A t( )x + B t( )u,

with initial condition x0 given. We assume that the final time T is fixed 
and given, and that no function of the final state ψ is specified. We want 
to find the sequence u*(t) that minimizes the performance index:  

€ 

J t0( ) =
1
2
xT T( )S T( )x T( ) +

1
2

xTQ t( )x + uTR t( )u( )dt
t0

T

∫

Linear because of the system dynamics 
Quadratic because of the performance index 
Regulator because of the absence of a tracking objective---we are 
interested in regulation around the zero state.  
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Continuous Dynamic Optimization 
We adjoin the system equations (constraints) to the performance index 
J with a multiplier sequence λ(t) ∈ Rn. 

We define the Hamiltonian 

Thus, the necessary conditions for a stationary point are: 
€ 

J t0( ) =
1
2

xT T( )S T( )x T( ) +
1
2

xTQ t( )x + uT R t( )u˙ x + λT A t( )x + B t( )u − ˙ x ( )[ ]dt
t0

T

∫

€ 

H t( ) = xTQ t( )x + uT R t( )u˙ x + λT A t( )x + B t( )u( )

€ 

˙ x = ∂H
∂λ

= A t( )x + B t( )u State Equation 

€ 

− ˙ λ =
∂H
∂x

=Qx + AT t( )λ

€ 

∂H
∂u

= Ru+ BTλ = 0⇒    u t( ) = −R−1BTλ t( )

Costate Equation 

Stationary Condition 
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Continuous Dynamic Optimization 
We must solve the Two-point Boundary-value Problem 

for t0≤t ≤ T, with boundary conditions 

We will solve this system for two special cases:  

1- Fixed final state  

€ 

˙ x = ∂H
∂λ

= A t( )x − B t( )R−1BT t( )λ t( )

€ 

− ˙ λ =
∂H
∂x

=Qx + AT t( )λ

→  Open loop control 

2- Free final state  →  Closed loop control 
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Continuous Dynamic Optimization 

5.1 Fixed-Final State and Open-Loop Control 

If Q≠0, the problem is intractable analytically. The Two-point Boundary-
value Problem is now simplified: 

€ 

˙ x = A t( )x + B t( )u,

ME 433 - State Space Control 176 

Continuous Dynamic Optimization 
The costate equation is decoupled from the state equation, and it has 
an easy solution: 

We replace λ in the state equation and solve: 

We solve now for λ(T): 

€ 

λ T( ) = −GC
−1 t0,T( ) rT − eA T − t0( )x0( )

Weighted Controllability Gramian of [A,B]  
€ 

x T( ) = eA T − t0( )x0 − eA T −τ( )BR−1BTeA
T T −τ( )dτ

t0

T

∫ λ T( ) = rT
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Continuous Dynamic Optimization 
Summary: 

€ 

u* t( ) = R−1BTeA
T T − t( )GC

−1 t0,T( ) rT − eA T − t0( )x0( )

The inverse of the gramian GC(t0,T) exits if and only if the system is 
controllable.  

€ 

GC t0,T( ) = eA T −τ( )BR−1BTeA
T T −τ( )dτ

t0

T

∫

€ 

λ T( ) = −GC
−1 t0,T( ) rT − eA T − t0( )x0( )

€ 

x t( ) = eA t− t0( )x0 − eA T −τ( )BR−1BTeA
T T −τ( )λ T( )dτ

t0

t

∫
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Continuous Dynamic Optimization 
5.2 Free-Final-State and Closed-Loop Control 

We need 

Let us assume that this relationship holds for all t0≤t≤T (Sweep Method) 

€ 

λ t( ) = S t( )x t( )

The Two-point Boundary-value Problem is: 

€ 

˙ x = A t( )x + B t( )u,

€ 

J t0( ) =
1
2
xT T( )S T( )x T( ) +

1
2

xTQ t( )x + uTR t( )u( )dt
t0

T

∫
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Continuous Dynamic Optimization 
We differentiate the costate and use the state equation, 

€ 

˙ λ = ˙ S x + S˙ x = ˙ S x + S Ax − BR−1BT Sx( )
We use now the costate equation, 

Since this must hold for any trajectory x, 

Ricatti Equation (RE) 
€ 

− Qx + AT Sx( ) = ˙ S x + S Ax − BR−1BT Sx( )
− ˙ S x = AT S + SA − SBR−1BT S + Q( )x

The optimal control is given by, 

€ 

u t( ) = −R−1BTSx t( ) = −K t( )x t( ) Feedback Control!!! 

Kalman Gain 

€ 

K t( ) = R−1BTS t( )
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Continuous Dynamic Optimization 

This expresses u as a time-varying, linear, state-variable, feedback 
control. The feedback gain K is computed ahead of time via S, which is 
obtained by solving the Riccati equation backward in time with terminal 
condition ST.  

€ 

J t0( ) =
1
2
xT t0( )S t0( )x t0( ) +

1
2

R−1BTSx + u
R

2
dt

t0

T

∫

Similarly to the discrete-time case, it is possible to rewrite the cost 
function as  

If we select the optimal control, the value of the cost function for t0≤t ≤ T  
is just  

€ 

J t0( ) =
1
2
xT t0( )S t0( )x t0( )
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Continuous Dynamic Optimization 
Examples:    
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Steady-State Feedback 

The solution of the LQR optimal control problem for discrete-time 
systems is a state feedback of the form 

6. Steady-State Feedback for discrete-time systems 

where 

€ 

Kk = R + BTSk+1B( )−1BTSk+1A

€ 

Sk = ATSk+1A − A
TSk+1B BTSk+1B + R( )−1BTSk+1A +Q

The closed-loop system is time-varying!!! 

€ 

xk+1 = A − BKk( )xk
What about a suboptimal constant 
feedback gain? 
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Steady-State Feedback 

Let us assume that when k  → -∞, the sequence Sk converges to a 
steady-state matrix S∞. If Sk does converge, then Sk =Sk+1 =S. Thus, in 
the limit 

6.1 The Algebraic Riccati Equation (ARE) 

€ 

Sk = ATSk+1A − A
TSk+1B BTSk+1B + R( )−1BTSk+1A +Q RDE 

€ 

S = AT S − SB BTSB + R( )−1BTS[ ]A +Q ARE 

The limiting solution S∞ is clearly a solution of the ARE. Under some 
circumstances we may be able to use the following time-invariant 
feedback control instead of the optimal control, 

€ 

uk = −K∞xk
K∞ = R + BTS∞B( )−1BTS∞A
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Steady-State Feedback 
1- When does there exist a bounded limiting solution S∞ to the Ricatti 
equation for all choices of SN? 
2- In general, the limiting solution S∞ depends on the boundary 
condition SN. When is S∞ the same for all choices of SN? 
3- When is the closed-loop system (uk=-K∞xk ) asymptotically stable? 

Theorem: Let (A, B) be stabilizable. Then, for every choice of SN  there 
is a bounded solution S∞ to the RDE. Furthermore, S∞ is a positive 
semidefinite solution to the ARE. 

Theorem: Let C be a square root of the intermediate-state weighting 
matrix, so that Q=CTC≥0,  and suppose R>0. Suppose (A, C) is 
observable. Then, (A, B) is stabilizable if and only if:  
a- There is a unique positive definite limiting solution S∞ to the RDE. 
Furthermore, S∞ is the unique positive definite solution to the ARE. 
b- The closed-loop plant 

is asymptotically stable, where K∞ is given by 

€ 

K∞ = R + BTS∞B( )−1BTS∞A

€ 

xk+1 = A − BK∞( )xk
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Steady-State Feedback 

The solution of the LQR optimal control problem for continuous-time 
systems is a state feedback of the form 

7. Steady-State Feedback for continuous-time systems 

where 

The closed-loop system is time-varying!!! 

€ 

˙ x t( ) = A − BK t( )( )x t( )
What about a suboptimal constant 
feedback gain? 

€ 

u t( ) = −K t( )x t( )

€ 

K t( ) = R−1BTS t( )

€ 

− ˙ S = AT S + SA − SBR−1BT S + Q

€ 

u t( ) = −K t( )x t( ) = −K∞x t( )
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Steady-State Feedback 

Let us assume that when t  →-∞, the sequence S(t) converges to a 
steady-state matrix S∞. If S(t) does converge, then dS/dt =0. Thus, in the 
limit 

7.1 The Algebraic Riccati Equation (ARE) 

RDE 

ARE 

The limiting solution S∞ is clearly a solution of the ARE. Under some 
circumstances we may be able to use the following time-invariant 
feedback control instead of the optimal control, 

€ 

u = −K∞x
K∞ = R−1BTS∞

€ 

− ˙ S = AT S + SA − SBR−1BT S + Q

€ 

0 = ATS + SA − SBR−1BTS +Q
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Steady-State Feedback 
1- When does there exist a bounded limiting solution S∞ to the Ricatti 
equation for all choices of S(T)? 
2- In general, the limiting solution S∞ depends on the boundary 
condition S(T). When is S∞ the same for all choices of S(T)? 
3- When is the closed-loop system (u=-K∞x) asymptotically stable? 

Theorem: Let (A, B) be stabilizable. Then, for every choice of S(T) there 
is a bounded solution S∞ to the RDE. Furthermore, S∞ is a positive 
semidefinite solution to the ARE. 

Theorem: Let C be a square root of the intermediate-state weighting 
matrix Q, so that Q=CTC≥0,  and suppose R>0. Suppose (A, C) is 
observable. Then, (A, B) is stabilizable if and only if:  
a- There is a unique positive definite limiting solution S∞ to the RDE. 
Furthermore, S∞ is the unique positive definite solution to the ARE. 
b- The closed-loop plant 

is asymptotically stable, where K∞ is given by 

€ 

˙ x = A − BK∞( )x
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Steady-State Feedback 
Examples:    
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Receding Horizon LQ Control 
8. Receding Horizon LQ Control 
So far we have seen two kinds of LQ control problems: 

Finite Horizon: Finite duration, time-varying solution (even for time 
invariant systems), solution via RDE, no stability properties necessary.  

€ 

J t0( ) =
1
2
xT T( )S T( )x T( ) +

1
2

xTQ t( )x + uTR t( )u( )dt
t0

T

∫

€ 

u t( ) = −R t( )−1B t( )T S t( )x t( )

€ 

− ˙ S = AT S + SA − SBR−1BT S + Q

Discrete time: 

Continuous time: 

€ 

uk = − Rk + Bk
T Sk+1Bk( )−1Bk

T Sk+1Akxk

€ 

Sk = Ak
T Sk+1Ak − Ak

T Sk+1Bk Bk
T Sk+1Bk + Rk( )−1Bk

T Sk+1Ak +Qk

€ 

J =
1
2
xN
T SN xN +

1
2

xk
TQkxk + uk

TRkuk( )
k=0

N −1

∑
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Receding Horizon LQ Control 

Infinite Horizon: Infinite duration, time invariant solution (for LTI 
systems + QTI cost), solution via ARE, stability via detectability. 

€ 

J =
1
2

xTQ t( )x + uTR t( )u( )dt
0

∞

∫

€ 

u t( ) = −R−1BTS∞x t( )

Discrete time: 

Continuous time: 

€ 

J =
1
2

xk
TQxk + uk

TRuk( )
k=0

∞

∑

€ 

0 = ATS∞ + S∞A − S∞BR
−1BTS∞ +Q

€ 

S∞ = AT S∞ − S∞B BTS∞B + R( )−1BTS∞[ ]A +Q

€ 

uk = − R + BTS∞B( )−1BTS∞Axk
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Receding Horizon LQ Control 
Receding Horizon: At each time i (discrete) or t (continuous) we solve 
a finite horizon problem  

€ 

J t( ) =
1
2
xT t +T( )S T( )x t +T( ) +

1
2

x t +τ( )T Q τ( )x t +τ( ) + u t +τ( )T R τ( )u t +τ( )( )dτ
0

T

∫

€ 

u t( ) = −R t( )−1B t( )T S 0( )x t( )

€ 

− ˙ S = AT S + SA − SBR−1BT S + Q

Discrete time: 

Continuous time: 

€ 

ui = − Ri + Bi
T S0Bi( )−1Bi

T S0Aixi

€ 

Sk = Ak
T Sk+1Ak − Ak

T Sk+1Bk Bk
T Sk+1Bk + Rk( )−1Bk

T Sk+1Ak +Qk

€ 

J =
1
2
xi+N
T SN xi+N +

1
2

xi+k
T Qkxi+k + ui+k

T Rkui+k( )
k=0

N −1

∑

€ 

0 ≤ k ≤ N −1

€ 

0 ≤ t ≤ T
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Receding Horizon LQ Control 
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Receding Horizon LQ Control 
Receding Horizon: At each time i (discrete) or t (continuous) we solve 
a finite horizon problem  

•  An infinite-horizon strategy → we need to understand its stabilization 
properties 

•  Time-invariant for LTI problems 

•  Capable of working in the nonlinear, constrained context, using explicit 
optimization  
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Receding Horizon LQ Control 
We define now the Fake Algebraic Riccati Equation (FARE)  

Discrete time: 

€ 

Sk = Ak
T Sk+1Ak − Ak

T Sk+1Bk Bk
T Sk+1Bk + Rk( )−1Bk

T Sk+1Ak +Qk

€ 

0 ≤ k ≤ N −1

€ 

ui = − Ri + Bi
T S0Bi( )−1Bi

T S0Aixi

€ 

Sk +1 = Ak
T Sk +1Ak − Ak

T Sk +1Bk Bk
T Sk +1Bk + Rk( )−1Bk

T Sk +1Ak + Q k
Q k = Qk + Sk +1 − Sk

We can study the stability properties of the Receding Horizon control as 
an Infinite Horizon control with a new Q (detectability + monotonicity). 


