ME 433 — STATE SPACE CONTROL

Lecture 9
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Discrete Dynamic Optimization

1. Multiple-step Discrete-time Finite-Horizon Optimal Control

The plant is described by the general nonlinear discrete-time dynamical
equation

X = flkox ), k=0,.. ,N-1

with initial condition x, given. The vector x, has » components and the
vector u, has m components. Note that this equation contains a set of
successive equality constraints which define the state x,, in terms of the
controls u,, and the known initial condition x,,.

The problem is to find the sequence u, that minimizes the performance
index: N-I
J = §(Noxy)+ D L{k,x,,)

k=0
Since none of the u, depends on any of the x, other than x,, this is
open-loop control.
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Discrete Dynamic Optimization

We adjoin the system equations (constraints) to the performance index
J with a multiplier sequence A(k) ER".

N-1

J = ¢(N,xN) + E{L(k,xk,uk) + )\‘€+1|:f(k’xk’uk) - xk+1]}

k=0

For convenience, we define a Hamiltonian at each step &

H, = L(k,xk,uk) + )»Llf(k,xk,uk)

Thus,
T =¢(N.x,)+ jE;{Hk Sy,
= ¢(Nxy) = Hoxy + ]:E:{Hk -~ Ax, }+H,
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Discrete Dynamic Optimization

We want to examine now the increment in j due to increments in all
the variables x,, 4,, and u,. The final time N is fixed and the initial

condition x, is given.
oH
}d +—* duk}
ou,

- oo 35

T
aH 0 K| oH
O dx, + Odu0+2[ k_l—xk] dA,
du,, k=1

axo A,
We make
oH,_, oH,
-x,=0=x,, =—%=flk,x,,u), k=0,...N-1 (1)
a)\’k k k+1 a)\'k-” f( k k)

with initial boundary condition

Xioo =X, | Difference equation solved forward in time |
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Discrete Dynamic Optimization

When the constraint is satisfied, we have

N-1
a7 = | 2P g lax, +y e 3 \ax, + e gy,
dxy 1 9x, du,
oH oH
+—2dx, +—2du,
%o Uy

We choose the multiplier sequence A(k) € R" so that we have

oH oL )
et oo gt Y Y o N- )
0x, 0x, 0x,
| Difference equation solved backward in time |
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Discrete Dynamic Optimization

With this choice of A, we have

— | og S oH oH
dJ = [g—valm Dy L bdu =y,

N k=0 Oy 0

- The initial condition x, is given, then dx,=0.

- For a fixed final state, x, is given, then dx,~0. For a free final state, we
need

0
P 3)
0xy

The initial condition for the Two-point Boundary-value Problem (1)-(2) is
the known value for x,. The final condition is either a desired value of x,,
or the value of 4, in (3).
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Discrete Dynamic Optimization

Now we have

N-1
N
dJ = L du,

20 ouy

For an extremum, the increment in J must be zero for any arbitrary
du,. This can only happen if we have

oH, JL ad
k=_k+ 7];+l£=0, k=0,...,N—1
ou, Ju, ou,
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Discrete Dynamic Optimization
System Properties Controller Properties

System Model State Equation
X = f(k’xk’”k) Xy = 0, _ f(k XU )
17 )\’k+l s VoM
Performance I\I]/zclr'ex Costate Equation
J=¢(N.xy)+ O L(k.x,.u,) e 0L o 9f

k - k+1
k=0
ox,  0x, 0x,

Stationary Condition

0H, 4L of,
e B gr e

u, Ju, ou,
Boundary Condition

Hamiltonian

H, = L(k,xk,uk) + )»L,f(k,xk,uk)

8 oH,
—ﬂ-%km=a-—%m=o
0xy 0x,

—
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Discrete Dynamic Optimization

So far, we have derived necessary conditions for a stationary point of J
that also satisfies the constrains x,, =f(k.x,,u,). We are interested now in
sufficient conditions for a local minimum. This requires satisfaction of
the stationary conditions above, plus establishment of the property that
dJ =0 for small changes du, about the stationary point.

0’H,  9°H,
1 ¢ 1S Al ox: ox,0u, ||dx,

dJ =—dx!, —= —Y|d k ok
PR 22[ 5p di ] O°H,  O°H, ||du,

oudx,  ou,

The values of dx, are determined by the sequence du, from the
differential of the plant dynamics
d d
dx,,, =—fdxk +—fduk, dx, =0
ox, ou,
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Discrete Dynamic Optimization

Examples:
X,,, =ax, +bu,, X0 = X
N-1
(a) Fixed final state  x,_y =1y Jo = 5}‘,%
k=0
(b) Free final state ~ x,_y —7; Jo= l(X -7 )2 "‘LNE_luz
=N N 07 H\UIN TN 2 ot k
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Discrete Dynamic Optimization

2. Linear Quadratic Regulator (LQR) Problem

The plant is described by the linear discrete-time dynamical equation
X = AX + By,

with initial condition x, given. We want to find the sequence u, that
minimizes the performance index:

1 IR
J= Ex;SNxN + EE(XZQkxk + u,{Rkuk)

k=0

Linear because of the system dynamics
Quadratic because of the performance index

Regulator because of the absence of a tracking objective---we are
interested in regulation around the zero state.
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Discrete Dynamic Optimization

We adjoin the system equations (constraints) to the performance index
J with a multiplier sequence A(k) €R".
N-1

1
EXICSNXN 5 E(x:Qkxk + ”ZRk”k) + )\;H(Akxk +B.u, - xk+1)
k=0

J

We define a Hamiltonian at each step &

T T T
H, =x,0x, +u, Ru, + )\’k+l|:Akxk + Bk”k]

Thus, the necessary conditions for a stationary point are:

o0H
X = aA,jl = A x, + B,
oH
)“i =—*t= x/ka + )\'II;HAk
0x,
o0H
P = quk + )\'71;+IBk =0= M;{ = _)\’TI;HBle;l
U
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Discrete Dynamic Optimization

We must solve the Two-point Boundary-value Problem
-1 pT
X = AX - BR B A,
Ay = AkT)"/m + 0%,
for &=0, ... , N-1 with boundary conditions

Xjoo =X ) 9H
koo = [—¢-A{V]de=o, —2dx, =0

Aoy =SyX,_y OF X,_y =Xy 0x X,

If [A] =0 we can invert 4 in the x, recursion to yield a reverse-time
variant.

“ipT -1 -1 “ipT
X =AX, —~BR B A, = x, =A X, +A BR B A,
T
A=A Ny +Ox,

Unfortunately, we are given x,, not x,, and 1, simultaneously.
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Discrete Dynamic Optimization

2.1 Fixed-Final State and Open-Loop Control

Xpy = Ax, + Bu,, Ay =Ty
N-l
IQ
J, = —Euk Ru,
2
k=0

If O0=0, the problem is intractable. The Two-point Boundary-value
Problem is now simplified:

X, =Ax, -BR'B"A,_, X, =Ax, —BR"'B" A,
A= A" A +0x, A= AT}"kH

+1
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Discrete Dynamic Optimization

The costate equation is decoupled from the state equation, and it has
an easy solution:

A= AT ={A = (A7) Ay

We replace A, in the state equation and solve:

A.N =X, = Akxo _ SAk_i_IBR_IBT(AT)N_i_I)LN

i=0

X, =Ax,-BR'B" (A"

)N—k—l

We solve now for A,;
N-1 .
xy = A¥x, - 3 AVBRUB(AT) Ay =y
i= N-1
Ay = -ng(o,z\(})(rN - Ax,) We(0,N) = > AY"'BR™'B(A”)
i=0

N-i-1

Weighted Controllability Gramian of [4,B]
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Discrete Dynamic Optimization

Summary: 4, = WA (OM)r, ~ A",
iy . N-i-1 R
We(0.N) = Y AV BRTB"(AT) T = U, u?
i=0 R

The inverse of the gramian W(0,N) exits if and only if U,~=[B AB A°B ...
AN-1B] is full rank (system is controllable).

A= ~(A7) WA ON) (g - AVx,)
x, = Alx, + §A"'HBR‘IBT(AT)N_i_]WC‘I(O,N)(rN - A"x,)
i=0

u, = BR'B" (A7) Wi (0N)(r, - AVx, )
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Discrete Dynamic Optimization

2.2 Free-Final-State and Closed-Loop Control

N-1
1 1
- T T T
X = Ay + By, Jo = EXNSNXN + _E(xk Qux; + ukRkuk)
k=0

The Two-point Boundary-value Problem is:
-1 pT
X =AX, - BR B A,
A = A D + 0%,
9¢

We need |—— - A,
xy

0
dx, =0= A, =—¢=x,f,SN
‘xN

Let us assume that this relationship holds for all £ <N (Sweep Method)

A =S.x,
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Discrete Dynamic Optimization

Substituting in the state equation,
-1 gt I+BR'B'S,. ) A
X = AX, =BR B S, X, = Xy =( + DI Dy k+1) Xk
Substituting in the costate equation,

) -
S = ApSiaXin + O, = Ox, + A/zS/m(I + BkRleZSkH) Ay

Since this must hold for any sequence x,,

Se=0+ AI{Sk+l(I+ BkRk_lBZSkn) A,
Using the matrix inversion lemma (A+BCD)™ = A™ —A"B(DA“B+C")_]DA‘1
-1
S, = ALSi A~ ALS, B, (BkTSkHBk + Rk) B S A, +0,

Ricatti Difference Equation (RDE)
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Discrete Dynamic Optimization

The optimal control is given by,

U, = _RIQIBI?)"IHI = _Rk_IBZSkuxku = _R/;lBZSku(Akxk + Bkuk)
Solving for u,,
1
U = _(1 + R/ZIBZSkuBk) R'B; S A,
-1
= _(Rk + BZSkHBk) B:SkﬂAkxk
=-K.x, Feedback Control!!!
T ot
K, = (Rk +B, Sk+1Bk) B, S, . A, Kalman Gain Sequence

This expresses u, as a time-varying, linear, state-variable, feedback
control. The feedback gain K, is computed ahead of time via the
sequence S,, which satisfies the RDE with terminal condition S,,.
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Discrete Dynamic Optimization

The optimal control is given by,

U, = _R;IBZ)% = _Rk_lBZSknxkﬂ = _Rl:lBIZ-SkH(Akxk + Bkuk)

+1
Solving for u,,
- _1 -
u, = ‘(I"' R, ]BkTSkHBk) R;'B{S, ,Ax,
-1

= _(Rk + BkTSk+1B/<) B S0 A,

= _kak Feedback Control!!!
T -1or )

K, = (Rk +B, Sk+lBk) B S A Kalman Gain Sequence

This expresses u, as a time-varying, linear, state-variable, feedback
control. The feedback gain K, is computed ahead of time via the
sequence S, which satisfies the RDE with terminal condition S,,.
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Discrete Dynamic Optimization

1 1 N-1
J, = Ex;SNxN "'EE(XZQM + u,kauk)
k=0

13
= Exgsoxo + 5 E(XZ+lSk+lxk+l + x:(Qk - Sk)xk + ”ZRkuk)

k=0
Where we have used the fact that
N-1
T T T T
E XS Xt = X S Xy = XSy Xy — xS,
k=0

Using the state equation

Jo = Engoxo + 5 E[XI{(AZSkﬂAk +0, -5, )xk + sz’fSk*lBkuk

|xk+1 =Ax, + Bkukl
N-l

k=0

+1y B{S, A, + 1y (BZSk+1Bk + Rk)”k]
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Discrete Dynamic Optimization

Using the Riccati equation

T
Sy = A:SkHAk - AZSk+lBk (BZSk+lBk + Rk) BZSk+1Ak +0,
we can obtain

1 N-1 -1
Jo = Engoxo + 2 E[XIZAZSkuBk (BZSkuBk + Rk) B S A
k=0

+x, ALS, (B + g BLS, A, + 1 (B£Sk+lBk + Rk)uk]

1 1 N-1 » 2
= Exgsoxo + 5 E (Rk + BkTSk+1B/<) By Sia A, + 1,
k=0 R +B{ S, By
1 ]
= EngOxO U = _(Rk + BZSkHBk) B S, Ax,
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