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Static Optimization 
1. Optimization without constraints 
Problem definition: Find the values of m parameters u1, u2,…,um that 
minimize a performance function or index 

  

€ 

L u1,u2,…,um( )⇒ dL =
∂L
∂u

du +
1
2
duT ∂

2L
∂u2

du +O 3( )

We define the decision vector   

€ 

u = u1 u2 … um[ ]T

€ 

L u( )

Necessary conditions for a minimum:    

  

€ 

∂L
∂u

= 0     ∂L
∂ui

= 0,i =1,…,m
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

∂2L
∂u2 ≥ 0     ∂2L

∂u2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
i, j

=
∂2L
∂ui∂u j

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

Positive semidefinite Hessian 

and write the performance index as    
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Static Optimization 
Sufficient conditions for a minimum:    

  

€ 

∂L
∂u

= 0     ∂L
∂ui

= 0,i =1,…,m
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

∂2L
∂u2 > 0     ∂2L

∂u2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
i, j

=
∂2L
∂ui∂u j

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ Positive definite Hessian 

Note:    

Positive semidefinite:    

€ 

Q ≥ 0  if  xTQx ≥ 0   ∀x ≠ 0
Q ≥ 0  if all  λi ≥ 0,   Q ≥ 0  if all  mi ≥ 0

Positive definite:    

€ 

Q > 0  if  xTQx > 0   ∀x ≠ 0
Q > 0  if all  λi > 0,   Q > 0  if all  mi > 0

€ 

λi:                    mi:eigenvalues principal minors 
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€ 

L = u1 u2[ ]
1 −1
−1 4
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
u1
u2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

Examples:    

€ 

L = u1 u2[ ]
−1 1
1 3

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
u1
u2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

€ 

L = u1 − u2
2( ) u1 − 3u22( )
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Static Optimization 
2. Optimization with constraints 
Problem definition: Find the values of m parameters u1, u2,…,um that 
minimize a performance function or index 

  

€ 

L u1,u2,…,um,x1,x2,…,xn( )
Subject to the constraint equation 

€ 

f x,u( ) = 0
The n state parameters x1, x2,…,xn are determined by the decision 
parameters u1, u2,…,um through the constraint equation (n equations). 
We define: 
Decision vector   

€ 

u = u1 u2 … um[ ]T

State vector   

€ 

x = x1 x2 … xn[ ]T

Constraint vector   

€ 

f = f1 f2 … fn[ ]T
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Static Optimization 

If 

  

€ 

L u1,u2,…,um,x1,x2,…,xn( )
and 

€ 

f x,u( ) = 0

are linear in both x and u, then, in general, a minimum does NOT exist. 
Inequalities constraints on the magnitudes of x and u are necessary to 
make the problem meaningful. If the inequality constraints are also 
linear, we are in front of a linear programming problem.   
We will focus at the beginning on nonlinear L and f. This of course is 
not a guarantee of the existence of a minimum. 
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Static Optimization 
2.1 Optimization with constraints – Approach A 
At a stationary point, dL is equal to zero to first order for all increments 
du when df is zero, letting x change as a function of u. Thus we require 

€ 

dL = Lxdx + Ludu = 0
df = fxdx + fudu = 0

€ 

Lu − Lx fx
−1 fu = 0

Hence, if dL is zero for arbitrary du, it is necessary that  

where 

€ 

Lx =
∂L
∂x
,Lu =

∂L
∂u
, fx =

∂f
∂x
, fu =

∂f
∂u

(m equations) 
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Static Optimization 
2.2 Optimization with constraints – Approach B 
At a stationary point, dL is equal to zero to first order for all increments 
du when df is zero, letting x change as a function of u. Thus we require 

€ 

dL = Lxdx + Ludu = 0
df = fxdx + fudu = 0

This set of equations defines a stationary point. For a non-trivial 
solution we need that the (n+1)  × (n+m) matrix has rank less than n+1. 
This means that its rows must be linearly dependent. So, there exists 
an n vector λ (Lagrange multiplier) such that  € 

⇔      
Lx Lu
fx fu

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
dx
du
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = 0

€ 

1 λT[ ] 
Lx Lu
fx fu

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = 0  ⇒   

Lx + λT fx = 0
Lu + λT fu = 0

  ⇒   
λT = −Lx fx

−1

Lu − Lx fx
−1 fu = 0
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€ 

∂H
∂u

=
∂L
∂u

+ λT
∂f
∂u

= 0     ⇒      Lu − Lx fx
−1 fu = 0

ME 433 - State Space Control 129 

Static Optimization 
2.3 Optimization with constraints – Approach C 
We adjoin the constraints to the performance index to define the 
Hamiltonian function 

€ 

H x,u,λ( ) = L x,u( ) + λT f x,u( )
where  λ ∈ Rn is a to-be-determined Lagrange multiplier. To choose x, u 
and λ to yield a stationary point we proceed as follows.  

€ 

dH =
∂H
∂x

dx +
∂H
∂u

du +
∂H
∂λ

dλ

€ 

∂H
∂x

=
∂L
∂x

+ λT
∂f
∂x

= 0     ⇒      λT = −Lx fx
−1

€ 

∂H
∂λ

= f = 0     (n equations) 

(n equations) 

(m equations) 
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So far, we have derived necessary conditions for a minimum point of L
(x,u) that also satisfies the constratins f(x,u)=0. We are interested now 
in sufficient conditions.  

€ 

dL = Lx Lu[ ]
dx
du
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ +
1
2
dxT duT[ ]

Lxx Lxu
Lux Luu

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
dx
du
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ +O(3)

df = fx fu[ ]
dx
du
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ +
1
2
dxT duT[ ]

fxx fxu
fux fuu

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
dx
du
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ +O(3)

where 

€ 

Lxx =
∂2L
∂x 2

,Luu =
∂2L
∂u2

,Lxu =
∂2L
∂x∂u

, fxx =
∂2 f
∂x 2

, fuu =
∂2 f
∂u2

, fxu =
∂2 f
∂x∂u

(1) 

(2) 

2.4 Optimization with constraints – Sufficient conditions 
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Static Optimization 

€ 

1 λT[ ]
dL
df
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = Hx Hu[ ]

dx
du
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ +
1
2
dxT duT[ ]

Hxx Hxu

Hux Huu

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
dx
du
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ +O(3)

Replacing this in (3) yields 

€ 

dx = − fx
−1 fudu

For a stationary point we need f=0, and also that dL=0 to first order for 
all increments dx, du. Since f=0, we also have df=0. And these 
conditions require Hx=0 and Hu=0 (necessary conditions). By (2) we 
have 

(3) 

€ 

dL =
1
2
duT − fu

T fx
−T I[ ]

Hxx Hxu

Hux Huu

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
− fx

−1 fu
I

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ du +O(3)
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€ 

− fu
T fx

−T I[ ]
Hxx Hxu

Hux Huu

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
− fx

−1 fu
I

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ > 0

Huu −Hux fx
−1 fu − fu

T fx
−THxu + fu

T fx
−THxx fx

−1 fu > 0

To ensure that this stationary point is a minimum we need dL>0 to the 
second order for all increments du: 

€ 

∂2L
∂u2 f =0

≡ Huu −Hux fx
−1 fu − fu

T fx
−THxu + fu

T fx
−THxx fx

−1 fu (4) 
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Static Optimization 

€ 

L x,u( ) =
1
2
x u[ ]

1 1
1 2
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
x
u
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ + 0 1[ ]

x
u
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ 

f x,u( ) = x − 3 = 0

Examples:    

€ 

L x,u( ) =
1
2
x 2

a2
+
u2

b2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

f x,u( ) = x +mu − c = 0

€ 

L x,u( ) =
1
2
xTQx +

1
2
uTRu

f x,u( ) = x + Bu+ c = 0

(a)    

(b)    

(c)    
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We now produce an interpretation of the Lagrange multiplier. Let us 
suppose that the constraints are increased by infinitesimal amounts so 
that we have f(x,u)=df, where df is an infinitesimal constant vector. How 
does the optimal value change? 

€ 

dHx
T = Hxxdx +Hxudu + fx

T dλ = 0
dHu

T = Huxdx +Huudu + fu
T dλ = 0

df = fxdx + fudu
The partial derivatives are evaluated at the original optimal value. 
These equations determine dx, du, dλ. 

€ 

dx = fx
−1df − fx

−1 fudu

dλ = − fx
−T Hxxdx +Hxudu( )

du = −
∂2L
∂2u
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
f =0

−1

Hux − fu
T fx

−THxx[ ] fx−1df ≡ −Cdf

2.5 Optimization with constraints – Lagrange multiplier 
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Static Optimization 

Existence of a neighboring optimal solution (for infinitesimal change in f) 
is guaranteed by  

€ 

dL = −λT df +
1
2
df T fx

−THxx fx
−1 −CTLuuC[ ]df€ 

Luu =
∂2L
∂2u
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
f =0

> 0

which is the sufficient condition for a local minimum (Equation (4)). 
Substituting the expression for dx and du in (3), and using Hx=Hu=0, we 
get 

€ 

∂Lmin
∂f

= −λT

∂2Lmin
∂f 2

= fx
−THxx fx

−1 −CTLuuC
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Static Optimization 
2.6 Optimization with constraints – Numerical solution 
1. Select initial u 

2. Determine x from f(x,u)=0 

3. Determine λ from 

4. Determine the gradient vector  

5. Update the control/decision vector by                          for k>0 (scalar) 

  (Steepest Descendent Method) 

6. Determine the predicted change                                       . Stop if small 
enough. Go to step 2 otherwise.    

€ 

λT = −Lx fx
−1

€ 

Hu = Lu + λT fu

€ 

Δu = −kHu

€ 

ΔL = Hu
TΔu = −kHu

THu


