ME 433 — STATE SPACE CONTROL

Lecture 8
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Static Optimization

1. Optimization without constraints

Problem definition: Find the values of m parameters u,, u,,...,u, that
minimize a performance function or index

2
L(ul,uz,...,um) =dL = %du+%duTz—ul;du+O(3)

T
We define the decision vector u = [u1 U, ... um]
and write the performance index as L(u)

Necessary conditions for a minimum:
oL oL
—=0 (—=0,i=1,...,m)

u u,

2 2 2
8_L2 =0 a_L2 = L Positive semidefinite Hessian
ou ou” |, ; du,u
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Static Optimization

Sufficient conditions for a minimum:

oL oL
— = —=0i=1....m
ou ou;
9’L 'L 9L . . .
— >0 —| = Positive definite Hessian
7 du y ou,du
Note:

Positive semidefinite: Q=0 if x'Qx=0 Vx=0
Q=0 ifall 4,20, Q=0 ifall |m|=0

Positive definite: 0>0 if x"Ox>0 Vx=0
Q>0 ifall 4,>0, Q>0 ifall |m|>0
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Static Optimization

Examples:
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Static Optimization

2. Optimization with constraints
Problem definition: Find the values of m parameters u,, u,,...,u, that
minimize a performance function or index
L(ul,uz,...,um,xl,xz,...,xn)
Subject to the constraint equation
f (x,u) =0
The n state parameters x,, x,,...,x, are determined by the decision

parameters u,, u,,...,u, through the constraint equation (n equations).
We define:

T
Decision vector U= [ul U, ... um]
T
State vector X = [x1 X, ... x”]
. T
Constraint vector ~ f = [ h Ao fn]
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Static Optimization

L(ul,uz,. el XX g ,xn)

and

f(x,u)=0

are linear in both x and u, then, in general, a minimum does NOT exist.
Inequalities constraints on the magnitudes of x and u are necessary to
make the problem meaningful. If the inequality constraints are also
linear, we are in front of a linear programming problem.

We will focus at the beginning on nonlinear L and f. This of course is
not a guarantee of the existence of a minimum.
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Static Optimization

2.1 Optimization with constraints — Approach A

At a stationary point, dL is equal to zero to first order for all increments
du when df'is zero, letting x change as a function of u. Thus we require

dL=Ldx+L,du=0
df = fdx+ f,du=0

where

Hence, if dL is zero for arbitrary du, it is necessary that

L, - fox_lfu =0 (m equations)
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Static Optimization

2.2 Optimization with constraints — Approach B

At a stationary point, dL is equal to zero to first order for all increments
du when df'is zero, letting x change as a function of u. Thus we require

dL=Ldx+L,du=0 L L, ||dx

= =
df = fdx+ f,du=0 f. [, |ldu

This set of equations defines a stationary point. For a non-trivial

solution we need that the (n+1) x (n+tm) matrix has rank less than n+1.

This means that its rows must be linearly dependent. So, there exists
an n vector A (Lagrange multiplier) such that

L L T - T - _ -1
[1 )\.T] X u =O = Lx+}\‘fx 0 = )\‘ ery
L L L+Xf,=0 L,-Lf'f, =0
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Static Optimization

2.3 Optimization with constraints — Approach C

We adjoin the constraints to the performance index to define the
Hamiltonian function

H(x,u,A) = L(x,u) + A" f(x,u)

where A €R"is a to-be-determined Lagrange multiplier. To choose x, u
and A to yield a stationary point we proceed as follows.

X ou A

oH

—=f=0 (n equations)
oA !

0H 0L 0

— =3 X i =0 = XN = —fox_l (n equations)
Jdx ox 0x

ﬁ = % + A % =0 = Lu - fox‘lf =0 (m equations)
ou du ou :
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Static Optimization

2.4 Optimization with constraints — Sufficient conditions

So far, we have derived necessary conditions for a minimum point of L
(x,u) that also satisfies the constratins f{x,u)=0. We are interested now
in sufficient conditions.

dL=[L, L“][;Zi]J'l[de du’ |

XX Xu

L. L

ux uu

dx}

2 du

d d
df =[f. fu][dzl+%[de duT][?f ;"”Hdﬂw@) @

uu

where

; 0L, _dL, L f _az_ff _<92_ff &S
XX aXZ’ uu au2’ Xu axau’ xx axz >J uu >J xu
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Static Optimization

[1 ] dL -[H H]dx +l[de du’ | Hoo Hydx +0(3) (3)
df < ellau| T2 H._ H, | du

d

For a stationary point we need /=0, and also that d.=0 to first order for
all increments dx, du. Since f=0, we also have df=0. And these
conditions require H=0 and H,=0 (necessary conditions). By (2) we
have

dx =—f7'f,du
Replacing this in (3) yields
1 T T T Hxx qu _fx_lfu
dL = du [-1] 1. I][HM a |l du+0(3)

ME 433 - State Space Control 131

Static Optimization

To ensure that this stationary point is a minimum we need dL>0 to the
second order for all increments du:

-7 1][

XX H.)CM
HM.’C HM u

} -1,
1

|0

HMLI - Huxfx_lfu - fMTfX_THXM + flleX_THXX‘f;C_lfM > 0

9°L

2
Ju -0
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= HMM - HMXfX_lfu - fMTfX_THXM + fMTfX_THfoX_lfu
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Static Optimization

Examples:

(a) L(x,u)=%[x u][

1 2 2
(b) L(x,u)= 5(% ¥ %)

flxu)=x+mu—-c=0

(c) L(x,u) = %xTQx +%uTRu
f(x,u)=x+Bu+c=0
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Static Optimization

2.5 Optimization with constraints — Lagrange multiplier

We now produce an interpretation of the Lagrange multiplier. Let us
suppose that the constraints are increased by infinitesimal amounts so
that we have f{x,u)=df, where df is an infinitesimal constant vector. How
does the optimal value change?

dH! =H _dx+H du+ fld\=0
dH' =H _dx+H du+ f dA=0
df = fdx+ f,du

The partial derivatives are evaluated at the original optimal value.
These equations determine dx, du, dA.

dx = f7'df - £7'f.du
dh=~f"(H dx+H du)

du = _(aZTL)' [H - fff{THxx]f;ldf = -Cdf
0u
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Static Optimization

Existence of a neighboring optimal solution (for infinitesimal change in f)

is guaranteed by oL
L, = (T) >0
0u -0

which is the sufficient condition for a local minimum (Equation (4)).
Substituting the expression for dx and du in (3), and using H =H,=0, we
get

1
dL=-Adf +—df"'[ £ H £ - C"L,Cldf

al’min = —)\,T
JIf
L,
afr;“] = fx_THXXfX_l - CTLuuC
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Static Optimization

2.6 Optimization with constraints — Numerical solution

1. Select initial u

2. Determine x from f(x,u)=0

3. Determine A from A" = -L _f.

4. Determine the gradient vector H =L, + ATfu

5. Update the control/decision vector by Au =-kH,  for k>0 (scalar)
(Steepest Descendent Method)

6. Determine the predicted change AL = H! Au = ~kH' H . Stop if small
enough. Go to step 2 otherwise.

ME 433 - State Space Control 136




