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Time Discretization
Continuous-time Feedback System
Continuous controller Plant
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Time Discretization

Discrete-time Feedback System

Digital controller Plant
Difference |#(KT)| D/A and | (1) ] )
. G(s) O y(t
equations hold :
Clock
Sampler Sensor
Ty
A/D oj<r y® 1 e

r(kT), e(kT), u(kT), y(kT): sampled signals

T: sample period ukT)
/T sample rate (Hz)

A/D:  analog-to-digital converter
D/A:  digital-to-analog converter

Continuous control, u(r)

Average u(t)
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Time Discretization

Function f(kT) of time:

flk)=fkT) is the sampled version of f{¢), and k=0, 1, 2, 3, ... refer to the
discrete sample times #,=0, t,=7, t,=27, t;=37, ...

f(0)
fik)
d f
2{ 1K)} = F(2) = 3 F(0)*
k=0 /7:
0 T o7 AT

“Differentiation” property:

2{f(k-1)} =2"F(2)
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Z-Transform

L-Transform | Waveform Z-Transform
1 l(kT) _z
s z-1
! kT Iz
2 (z-1)
1 z
E e-akT - e_aT
1 Tze ™
(s+a) kTe™ Coe)

B . z sin(ﬂT)
s+ p” sin(gi7) 22 -2cos(BT )k +1
s z(z-cos(ﬂT ))

kT
S2+ﬁ2 Cos(ﬂ ) 22—2cos(ﬂT}+1
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Z-Transform

Discrete-time System

y[k] + ak_ly[k - 1] +--+aylk-n]= bou[k] +

Z Transform

(1 +az++a, 7" +az”" )Y(s) = (bo et bmz_’")U(s)

cotb ulk—m]

T(z)=

Y@ _

b+ bz

m

U(z)

n-1

l+az+--+a, 27" +a,z
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Z-Transform

Continuous-time System:

f)=e* 1
S+
Discrete-time System:
__ _-okT z
f(kT)=e —

The pole at s=-a in the s-domain corresponds to a pole at z=e*T in the z-
domain:
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Z-Transform
Im(z)
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Z-Transform
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Control Design

Emulation (Discrete Equivalent):

ZOH * G(5) O Y(5)

Discrete Design:

_+_
R(z) D) — G 0 Y(z)
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Discrete Equivalent (Emulation) Design

Tustin’s (Bilinear) Method:

?

e(kT) u(kT)
e(t)y o—» D(s) —O u(t) ———— > o) o—c>( D(z) ZOH —o u(t)
T

A (;( f)

kKT —T kT t
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Discrete Equivalent (Emulation) Design

Nyquist Theorem:

The Nyquist theorem states that a signal must be sampled at least twice
as fast as the bandwidth of the signal to accurately reconstruct the
waveform; otherwise, the high-frequency content will alias at a
frequency inside the spectrum of interest (passband). An alias is a false
lower frequency component that appears in sampled data acquired at too
low a sampling rate.

An analog anti-alias filter is often placed between the sensor and the A/D
converter. Its function is to reduce the higher-frequency noise
components in the analog signal in order to prevent aliasing, that is,
having noise or high-frequency components being modulated to a lower
frequency by the sampling process.

If designing by discrete equivalents, a minimum sample rate of 20 times
the bandwidth is recommended. Typically, even faster sampling is useful
for best performance. Computational delay should be less than 7/10.
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Discrete Equivalent (Emulation) Design

Example:
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Discrete Design

Digital controller Plant
Difference [#(KT)| D/A and | u() Gis o vt
equations hold » ’
Sampler Sensor
Ty
A/D o o— 22 | .
+ .
R() D) —* G O ¥(z) What is the TF between u(kT) and y(kT)?

G(z) =(1-2")2{G(s)/s}
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Discrete Design

Example:
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Solution of State Equation

We consider the linear, time-invariant system

X = Ax + Bu,

y=Cx+ Du.

The overall solution for the state equation can be written as
t
x(t)=e"""x(1,) + feA("”Bu(/l)d)L
Iy
and the system output as

¥ ()= Cx(t) + Du(t) = Ce*™'x(1,) + C [ Bu(A)dA + Du(?)
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Solution of State Equation

Let us now consider t,=kT and t=kT+T, then

kT+T

x(kT+T)=e"" x(kT)+ feA(k””)Bu()L)d)L
kT

Let us also consider

u@t)=ukT) Vei€|kT,kT+T]

Using the change of variable n=kT+1-A, we obtain

T
x(kT+T)= eATx(kT)+feA"dnBu(kT)
0
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Solution of State Equation

Defining T
b= T-= feA"dnB
0

we can write

x(k+1) = Ox(k)+Tu(k),
(k)= Cx(k)+ Du(k).

Note that we can write:

d=]+ATY

272
W=7+ AT + AT
2! 3!
i Aka+l % Aka
(k+D! & k+D!

TB =¥YTB

k=0
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Solution of State Equation

We consider the linear, time-invariant system

x(k+1)= dx(k)+Tu(k),
y(k) = Cx(k)+ Du(k).

We Z transform the state equation to obtain

zZX(z)=0X(z)+TU(z)

X(2)=zlx()]  U(z)=Z[u()]
And we solve to obtain

0@ =C(zI-®) T+D
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