ME 433 — STATE SPACE CONTROL

Lecture 4
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State Transformation

We consider the linear, time-invariant system

X = Ax + Bu,
y=Cx+ Du.
We define the state transformation
x(t) =Tz(t) < T7'x(t) = z(¢)
Then we can write

T2 =ATz+Bu==T"'"ATz+T 'Bu

y=CTz+ Du.
to obtain
s =Az+Bu — — e~ =
~  ~ A=T'"AT,B=T"'B,C=CT,D=D
y=Cz+Du

The state-space representation is NOT unique!
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Solution of State Equation

Time-invariant Dynamics:

We consider the linear, time-invariant, homogeneous system
X = Ax+ Bu

where 4 is a constant nx»n matrix. The solution can be written as
t
x(t) = e’ x(1) +feA("’1)Bu(/l)d)L

Time-variant Dynamics:

We consider the linear, time-variant, homogeneous system
X = A(t)x + Bu
where 4 is a time-variant nxn matrix. The solution can be written as

x(t) = o(t,7 x(1) +j<1>(t,)t)B()L)u()L)d)L
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Transfer Function

We consider the linear, time-invariant system

X = Ax + Bu,
y=Cx+ Du.

We Laplace transform the state equation to obtain

sX(s)-x(0)= AX(s)+ BU(s) L[x()]= sx(s)-x(0)

X()=L[x@)]  Us)=L[u()]

And we solve to obtain

X(s)=(s/ - A)"'x(0)+(s/ - 4)'BU(s)
We Laplace transform the output equation to obtain
Y(s)=CX(s)+DU(s)
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Solution of State Equation
X(s)=(s1=A)" x(0)+(s1 = 4)' BU(s)

We inverse Laplace transform to obtain

t
x(r)=e"x, +feA(’"T)Bu(‘r)d‘r
0

t

[ £t —r)g(r)dr] = f(5)8(s)

0

where L[eA’]=(sI—A)_1; L

For LTI systems, the exponential matrix ¢/ is the transition matrix of the
system. Its Laplace transform ®(s)=(s/-4)"! is called the resolvent of the
system. Faddeeva’s algorithm allows for a fast computation of @(s).
How can we compute the transition matrix e’ ?

1. Compute s/-A4.

2. Obtain the resolvent @(s) by inverting sI-A.

3. Obtain the ftransition matrix by computing the inverse Laplace
transform of the resolvent, element by element.
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Transfer Function

Assuming x(0)=0 and combining state and output equations we obtain
the transfer function

Y(s) = [C(sl _A)'B+ D]U(s)

The transfer function does NOT depend on the state choice because it
represents the input-output relationship.

Given two state space representations
X = Ax + Bu, z=Az+ Bu

y=Cx+Du. y=52+5u

Y(s) = [é(sl ~A) "B+ D]U(s) - [c(sl _A) B+ D]U(s)
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Controllability and Observability

Let us consider the system

X =Ax+ Bu,

y=Cx+ Du.
with
2 3 2 1 1
-2 -3 0 0 -2
A= B=| “|,c=[7 6 4 2]p=0
—2 -2 -4 0 2
-2 -2 -2 -5 -1

and transfer function

52 +9s% +26s +24
s*+10s° +35s5% +50s + 4

H(s)=C(sI-A)'B+D =
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Controllability and Observability

The transfer function can be written as

(s+2)(s+3)s+4) 1

H) = DG+ +3)G+4) G+

What's going on? Let’s see the system from a different angle. Consider:

x(t) =Tz(t) = T7'x(t) = z(¢)

with
1 -1 0 O
-1 2 -1 0
T =
0o -1 2 -1
o 0 -1 2
to obtain
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Controllability and Observability

Z=Zz+§u
y=52+5u
with
-1 0 0 0
~ o 0O -2 0 0
A=T AT = s
0 0 -3 0

1
B=T"'B= (1),5=CT=[1 1 0 0]D=0
0
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Controllability and Observability

Let us assume the following modal form:

X = Ax + Bu,
y=Cx+ Du.
—p, 0 0 0 1
0 - 0 1
A= & B=| l,c=[k 0 k 0]D=0
0 0 -p, 0 0
0o 0 0 -p, 0

Y(S)=LU(S)+ 0 U(s)+ ks 0+ 0 0
s+ p, s+ p, s+p,  s+p,

Only the controllable and observable mode appears in the transfer function
63
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Controllability and Observability

U(s)
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Controllability

Problem Definition: “A system is said to be controllable if and only if it
is possible, by means of the input, to transfer the system from any initial
state x(0) to any other state x(¢) in a finite time = 0”

Let us take

where

is invertible.
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x(t) = e”x(0) + feA("’)Bu(r)dr
0

u(t) = BTeAT(’_’)P’l(t)[x(t) -

eA’x(O)]
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Controllability

Replacing u in the expression for x we will demonstrate that this is an
input that drives the state from x(0) to x(¢).

x(t) = e”x(0) + j’e*‘("’)B[BTeAT("’)P‘1 (t)[x(t) - eA’x(O)]]dr

=e"x(0)+ feA(’_’)BBTeAT(’"T)dTP'I(t)[x(t) - eA'x(O)]
0

=e"x(0)+ P(1)P' (t)[x(t) - eA’x(O)]

- x(1)

It is indeed possible to show that this the only input that drives the state
from x(0) to x(?).
Theorem: A system is controllable if and only if the matrix

t

P(t) = feA('_T)BBTeAT(t_T)d‘c Controllability Gramian

0
is nonsingular for some = 0.

Proof: In class
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Controllability

The time derivative of the Controllability Gramian
y T
P(t) = feA("’)BBTeA g
0

is given by (Leibniz’s rule)

iP(t) _ eA(t—r)BBTeAT(t—r)
dt

+

T=1

t t

+fi[eA([")]BBTeAT(”’)dr+ feA(”’)BBTi[e*‘r(”’)]dr
dt dt

0 0

t t
-BB"+ [ i[e“"’)]BBTeAT("f)dH ) eA("’)BBTi[eAT("’)]dt
o dt ) dt

Then, the Controllability Gramian satisfies
P(t) =BB" +AP(t)+P(t)AT, P(O) =0 Lyapunov Equation
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Controllability

Theorem: “A system is controllable if and only if the matrix
C = [B AB A’B ... A"'IB] Controllability Matrix
is full-rank.”

Proof: In class
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Observability

Problem Definition: “An unforced system is said to be observable if
and only if it is possible to determine any (arbitrary initial) state x(0) by
using only a finite record, y(7) for 0=z <T, of the output”

Theorem: “A system is observable if and only if the matrix
t

o(r) = feAT(t_T)CTceA(t_T)dT Observability Gramian

0
is nonsingular for some t= 0.
The Observability Gramian satisfies

Q(t) ~C'C+ ATQ(Z,) + Q(t)A, Q(O) =0 Lyapunov Equation

Theorem: “A system is observable if and only if the matrix
C

_ A
0 = C Observability Matrix

CAn—l

is full-rank.”
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Controllability & Observability

Theorem (Popov-Belevitch-Hautus): Eigenvector Tests

A pair {4,B} will be noncontrollable if and only if there exists a row
vector ¢=0 such that

qA = Aq, gB=0

In other words, {4,B} will be controllable if and only if there is no row (or
left) eigenvector of 4 that is orthogonal to B.

A pair {C,4} will be nonobservable if and only if there exists a column
vector p=0 such that

Ap = Ap, Cp=0

In other words, {C,4} will be observable if and only if there is no column
(or right) eigenvector of 4 that is orthogonal to C.

Proof: In class

ME 433 - State Space Control 70

Controllability & Observability

Theorem (Popov-Belevitch-Hautus): Rank Tests

A pair {4,B} will be controllable if and only if
rank[sl -A B] =n for all s
A pair {C,4} will be observable if and only if

C
sl-A

rank[ =n for all s

Proof: In class
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Controllability & Observability

Examples :
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