
1 

54 ME 433 - State Space Control 

ME 433 – STATE SPACE CONTROL 

Lecture 4 

55 ME 433 - State Space Control 

We consider the linear, time-invariant system 

We define the state transformation 

Then we can write 

to obtain 

State Transformation 

The state-space representation is NOT unique! 
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We consider the linear, time-invariant, homogeneous system 

Time-invariant Dynamics: 

where A is a constant n×n matrix. The solution can be written as 

Solution of State Equation 

We consider the linear, time-variant, homogeneous system 

Time-variant Dynamics: 

where A is a time-variant n×n matrix. The solution can be written as 
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We consider the linear, time-invariant system 

And we solve to obtain 

We Laplace transform the state equation to obtain 

Transfer Function 

We Laplace transform the output equation to obtain 
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We inverse Laplace transform to obtain 

where 

€ 

L eAt[ ] = sI − A( )−1;   L f t −τ( )g τ( )dτ
0

t

∫
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = f (s)g(s)

Solution of State Equation 

For LTI systems, the exponential matrix eAt is the transition matrix of the 
system. Its Laplace transform Φ(s)=(sI-A)-1 is called the resolvent of the 
system. Faddeeva’s algorithm allows for a fast computation of Φ(s). 

How can we compute the transition matrix eAt ? 
1.  Compute sI-A. 
2.  Obtain the resolvent Φ(s) by inverting sI-A. 
3.  Obtain the transition matrix by computing the inverse Laplace 

transform of the resolvent, element by element.  
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The transfer function does NOT depend on the state choice because it 
represents the input-output relationship.   

€ 

Y (s) = ˜ C sI − ˜ A ( )−1 ˜ B + ˜ D [ ]U(s) = C sI − A( )−1B + D[ ]U(s)

Transfer Function 
Assuming x(0)=0 and combining state and output equations we obtain 
the transfer function 

€ 

Y (s) = C sI − A( )−1B +D[ ]U(s)

Given two state space representations 



4 

60 ME 433 - State Space Control 

Let us consider the system 

Controllability and Observability 

with 

and transfer function 
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Controllability and Observability 
The transfer function can be written as 

What’s going on? Let’s see the system from a different angle. Consider:  

with 

to obtain 
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Controllability and Observability 

with 

63 ME 433 - State Space Control 

Let us assume the following modal form: 

Only the controllable and observable mode appears in the transfer function  

Controllability and Observability 
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Controllability and Observability 

65 ME 433 - State Space Control 

Controllability 

€ 

x t( ) = eAt x(0) + eA t−τ( )Bu τ( )dτ
0

t

∫

Problem Definition: “A system is said to be controllable if and only if it 
is possible, by means of the input, to transfer the system from any initial 
state x(0) to any other state x(t) in a finite time t≥ 0” 

Let us take  

€ 

u τ( ) = BTeA
T t−τ( )P −1 t( ) x t( ) − eAt x 0( )[ ]

where  

€ 

P t( ) = eA t−τ( )BBTeA
T t−τ( )dτ

0

t

∫

is invertible. 
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Controllability 

€ 

x t( ) = eAt x(0) + eA t−τ( )B BTeA
T t−τ( )P −1 t( ) x t( ) − eAt x 0( )[ ][ ]dτ

0

t

∫

= eAt x(0) + eA t−τ( )BBTeA
T t−τ( )dτ

0

t

∫ P −1 t( ) x t( ) − eAt x 0( )[ ]

= eAt x(0) + P t( )P −1 t( ) x t( ) − eAt x 0( )[ ]
= x t( )

Replacing u in the expression for x we will demonstrate that this is an 
input that drives the state from x(0) to x(t). 

It is indeed possible to show that this the only input that drives the state 
from x(0) to x(t). 
Theorem: A system is controllable if and only if the matrix  

is nonsingular for some t≥ 0. 

€ 

P t( ) = eA t−τ( )BBTeA
T t−τ( )dτ

0

t

∫ Controllability Gramian 

Proof: In class 
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Controllability 
The time derivative of the Controllability Gramian 

is given by (Leibniz’s rule) 

€ 

P t( ) = eA t−τ( )BBTeA
T t−τ( )dτ

0

t

∫

€ 

d
dt
P t( ) = eA t−τ( )BBTeA

T t−τ( )

τ= t
+

+
d
dt

eA t−τ( )[ ]BBTeA
T t−τ( )dτ

0

t

∫ + eA t−τ( )BBT d
dt

eA
T t−τ( )[ ]dτ

0

t

∫

= BBT +
d
dt

eA t−τ( )[ ]BBTeA
T t−τ( )dτ

0

t

∫ + eA t−τ( )BBT d
dt

eA
T t−τ( )[ ]dτ

0

t

∫

Then, the Controllability Gramian satisfies 

€ 

˙ P t( ) = BBT + AP t( ) + P t( )AT ,      P 0( ) = 0 Lyapunov Equation 
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Theorem: “A system is controllable if and only if the matrix  

is full-rank.” 
  

€ 

C = B AB A2B  An−1B[ ] Controllability Matrix 

Controllability 

Proof: In class 
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Problem Definition: “An unforced system is said to be observable if 
and only if it is possible to determine any (arbitrary initial) state x(0) by 
using only a finite record, y(τ) for 0≤τ ≤T, of the output” 

Theorem:  “A system is observable if and only if the matrix  

is nonsingular for some t≥ 0.” 

€ 

Q t( ) = eA
T t−τ( )CTCeA t−τ( )dτ

0

t

∫ Observability Gramian 

The Observability Gramian satisfies 

€ 

˙ Q t( ) = CTC + ATQ t( ) + Q t( )A,      Q 0( ) = 0 Lyapunov Equation 

Theorem: “A system is observable if and only if the matrix  

is full-rank.” 
  

€ 

O =

C
CA


CAn−1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

Observability Matrix 

Observability 
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Theorem (Popov-Belevitch-Hautus):  Eigenvector Tests 

A pair {A,B} will be noncontrollable if and only if there exists a row 
vector q≠0 such that   

In other words, {A,B} will be controllable if and only if there is no row (or 
left) eigenvector of A that is orthogonal to B. 

A pair {C,A} will be nonobservable if and only if there exists a column 
vector p≠0 such that   

In other words, {C,A} will be observable if and only if there is no column 
(or right) eigenvector of A that is orthogonal to C. 

€ 

qA = λq,                 qB = 0

Controllability & Observability 

Proof: In class 
€ 

Ap = λp,                 Cp = 0
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Controllability & Observability 
Theorem (Popov-Belevitch-Hautus):  Rank Tests 

A pair {A,B} will be controllable if and only if    

A pair {C,A} will be observable if and only if 

€ 

rank sI − A B[ ] = n            for all s

Proof: In class 

€ 

rank
C

sI − A
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = n            for all s
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Controllability & Observability 
Examples :    


