ME 433 — STATE SPACE CONTROL

Lecture 3
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Dynamic Model

MECHANICAL SYSTEM: F=1Ia Newton’s law
/damping coefficient

loo =—-Imgsin@ -bw+T,

w=0 angular velocity
a=w=0 angular acceleration
I =ml? moment of inertia

6 = —L249'—§sin8+i2
ml / ml

Which are the equilibrium points when T,=0? Stable
At equilibrium: 5=9=0:>0=—§sin0=>8=0,n

Unstable
3
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Linearization

What happens around 6=0?

b g T
e

By Taylor Expansion:

sin(y)=y +hot.=sin(y)=~y

Linearized Equation:

sin(y)

o b g L
R G G
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State-variable Representation

V== b2 y_§y+i’2 [[]:> Reduce to first order equations:
ml [ ml

o

Is this state-space representation unique?
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State Variable x,=y N~ %
Representation T b g T,
R R R R
¥ 0 1 0
XE[ ll,uETc=fc= g 3 b |x+| 1 |u=Ax+Bu
% [ omlP] | mi
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Linearization

What happens around 6=r?

O=m+x= 5C'=—iz>'c—§sin(ﬂ+x)+ T"’z
ml / ml
)'c'=—izx+§sin(x)+ Tcz
ml [ ml

By Taylor Expansion:

sin(x)=x + h.o.t. = sin(x )= x

Linearized Equation:

sin(x)
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State-variable Representation

b T
= _725( + gx + ‘32 [[]:> Reduce to first order equations:
ml / ml @

X =X =%

State Variable 1=

Representation LT b g T,
X, =X X, =- 2X2+*X1+ 5

ml / ml

/ ml? mil?

. 0 1 0
| .
xs[ ],uETczx= g b |x+| 1 |u=Ax+ Bu

Is this state-space representation unique?
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State Transformation

We consider the linear, time-invariant system
X = Ax+ Bu,
y=Cx+ Du.
We define the state transformation
x(t) =Tz(t) < T7'x(t) = z(¢)

Then we can write

Tz =ATz+Bu=>=T"ATz+ T 'Bu

y=CTz + Du.
to obtain
z'=Zz+§u — — e~ =
~ A=T'"AT,B=T"'B,C=CT,D=D
y=Cz+Du

The state-space representation is NOT unique!
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Solution of State Equation

Time-invariant Dynamics:
We consider the linear, time-invariant, homogeneous system
X = Ax

where 4 is a constant nxn matrix. The solution can be written as

x(t)=e"c
where
t2 3
e =1+ At+ A —+ A4 —+--
2 3!
We can note that
deAt
= Ade™
dt

Then,

. A
x=Ae"c= Ax
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Solution of State Equation

Let us assume that x(t) is known. Then,
x(T)=e"c=c=e""x(1)
The homogeneous solution can be finally written as

x(t) = " “x(r)

We consider now the linear, time-invariant, non-homogeneous system

x=Ax+ Bu
We assume a “particular” solution of the form
x(t) =e"c(t)
Then, 1
¢(t) = e Bu(t) = c(1) =fe 2 Bu(A)dA
T

and

x(1) =j'eA("’1)Bu(/1)d/l
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Solution of State Equation

The overall solution can be written as
t
x(t) = e x(7) +feA(’"”Bu()L)d7L
T

At =1 ,
x(T) = x(7) + feA(’-“Bu(x)d/x =T=1
T

We finally can write the solution to the state equation as
t
x(t) = ™" x(7) +feA("“Bu()L)d)L

and the system output as

(t) = Cx(t) + Du(t) = Ce™" " x(t) +j'CeA("“Bu()L)d)L + Du(?)

Note that B, C and D can be functions of time.
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Solution of State Equation

Time-variant Dynamics:

We consider the linear, time-variant, homogeneous system
X =A(t)x
where 4 is a time-variant nxn matrix. The solution can be written as
x(t) = CD(Z‘,‘L')X(‘L’)

where @(z,7) is known as the “state-transition” matrix. For time-invariant
systems, the state transition matrix is only function of t-z,

D7 )= e
We can write the state and output as
t

x(t) = @, 7 (7)) + fCID(t,)L)B()L)u()L)d)L

y(#) = C(@)x(2) + D(t)u(?)
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= C(OHD (1,7 )(r) +jc1>(t, A )C(A)BA)u(A)dA + D(t)u(r)
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Solution of State Equation

Properties of the state transition matrix:
b(t,7)= A()D(t,7)
o(t,1)=1

(1,1, )= @@,.1, 0(,.1,)
CI)(r,t)= |:CI)(t,1:)]1

For time-invariant systems: (I)(tz,tl )= CI)(t2 -1 )

(D(O)= 1 e =1
SEWE)= D7) = el m )

®7'(t)=0(-1) C") e

NOTE: e’e® =eU**Y  onyif AB=BA.
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Solution of State Equation

Solution by the Laplace Transform:

We consider the linear, time-invariant system

X = Ax+ Bu,

y=Cx+ Du.

We Laplace transform the state equation to obtain

sX(s)-x(0)= AX(s)+ BU(s) L[x()]= sx(s)-x(0)

X(s)=L[x@)]  U(s) = L[u(t)]
And we solve to obtain
X(s)=(s1=4)'x(0)+ (s - 4)'BU(s)
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Solution of State Equation

X(s)=(sT=4)'x(0)+(s1 - 4)' BU(s)

We inverse Laplace transform to obtain

t
x(t)=e"x, +feA(”’)Bu(r)7’r
0

where we have used that

te F (- ay
]f(t —r)g(r)dr} = /()g(s)

L

0
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State Transformation

X(s)=(sI1-4)"x(0)+(s1 - 4)'BU(s)
We Laplace transform the output equation to obtain
Y(s)=CX(s)+DU(s)

Assuming x(0)=0 and combining state and output equations we obtain
the transfer function

Y(s)/U(s)=C(sI-A)'B+D
The transfer function does NOT depend on the state choice because it
represents the input-output relationship.
Given two state space representations o
X = Ax + Bu, z=Az+ Bu
y=CX+D7/I. y=52+Du

Y(s)/U(s)=Cl61-4) B+ D=C(s1-AY' B+D

Proof: In class
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Model Representation

Scalar Differential Equation

ay”+a vV svayray=bu™+b u" -t bii+bu

\ Transfer Function
Y(s) b,s"+b, 8" +--+bs+b,

G(s) =

- -1
U(s) ays"+a, s" +--+as+a,

State Variable Representation
X = Ax+ Bu
y=Cx+ Du\ Transfer Function
Y
G(s) Y _ C(s/-A)'B+D

Uls) 46
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Model Representation

Example: p=-2p+2q+24u
q=4p-9q +4u+2u

Find: - Transfer function between q(t) and u(t)
- Scalar ODE for q(f)

Scalar Differential Equation \

Transfer Function

|

Transfer Function

State Variable Representation
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Model Representation

Example: y+3y+4y+2y=u

Find: - State variable representation

Scalar Differential Equation

|

State Variable Representation
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Model Representation
Y(s) 6

Example: =
U(s) s*+5s5+6
Find: - State variable representation
Transfer function
State Variable Representation
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Model Representation
Example: Find: - State variable representation
V+3y+4y+2y=2u+u Scalar Differential Equation
State Variable Representation
Y(s) =— s+6 Transfer function
U(s) s +5s+6 l
State Variable Representation
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Model Representation

B Y(s) B bn_ls”_] +bn_2S"'2 +--+bs+b, B Y(s) X(s)
U(s) s"+a, "+ +as+a, X(s) U(s)

G(s)

X(s) 1 Y(s)

n-1 n-2
=— — , =b, 8" +b, 8" +--+Dhs+b,
U(s) s"+a,s" +-+as+a, X(s)

Choosing x, = x(”_l),x2 = x("_z),.. X _ =X

X, X, =X
-_an—l _an—Z _al _aO- 1
0 o0 0 0
A=] 0 1 - 0 o0 [,B=|0|.c=[p_, b, - b b]D=0
0
0 0 | 0 0 Controller Form
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Model Representation

_Y(s) b
U(s) s"+a, 5"+ +as+a,

n-1 n-2
ST +b, ST+ 4 bis + b,

n

G(s)

(9" +a, 5" ++as+a, )/(s) = (bn_ls""1 +b, 8" 4+ bs+b, )](s)
Y(s) =57 (b, U(s)~a, Y(s))+s7 (b, ,U(s) - a, Y (5))++
+5(BU(s) - a Y (5)+ 5™ (BU () - a,Y (5))

Choosing x, = y(”‘l),x2 = y(”‘z),...,xn_1 = y(l),xn =y

0 0 - 0 -a b,
10 - 0 -q 1
A=l0 1 -0 ¢ |,B=| i |c=[0 0 - 0 1]D=0
~ "2 Observer Form
0 0 1 -a,, »
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Model Representation

Y(s bs"+b s" ' +--+bs+b k k
G(S)= ( ) - mn m—ln_l 1 0 _ 1 +oet n
U(s) s"+a, s+ +as+a, S+ p, s+p,
Choosing X, =—pX +u "
y=2yi
yi=kixi pp
-p 0 0 0 1
0 -p, 0 0 1
A= 0 0 . 0 0 .B=|1,c=[k, k, - k,, kD=0
_pnfl 0 1
0 0 0 -p, 1 Modal Form
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