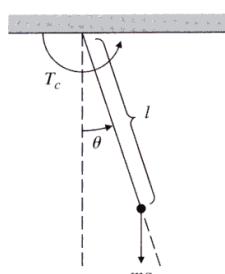


ME 433 – STATE SPACE CONTROL

Lecture 3

Dynamic Model

MECHANICAL SYSTEM:



$$F = I\alpha \quad \text{Newton's law}$$

damping coefficient

$$I\alpha = -lmg \sin \theta - b\omega + T_c$$

$\omega = \dot{\theta}$ angular velocity

$\alpha = \dot{\omega} = \ddot{\theta}$ angular acceleration

$I = ml^2$ moment of inertia

$$\ddot{\theta} = -\frac{b}{ml^2}\dot{\theta} - \frac{g}{l} \sin \theta + \frac{T_c}{ml^2}$$

Which are the equilibrium points when $T_c=0$?

At equilibrium: $\ddot{\theta} = \dot{\theta} = 0 \Rightarrow 0 = -\frac{g}{l} \sin \theta \Rightarrow \theta = 0, \pi$

Stable

Unstable

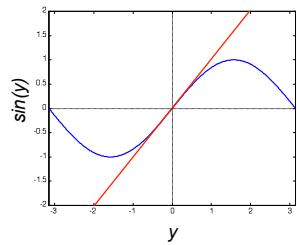
Linearization

What happens around $\theta=0$?

$$\theta = y \Rightarrow \ddot{y} = -\frac{b}{ml^2} \dot{y} - \frac{g}{l} \sin(y) + \frac{T_c}{ml^2}$$

By Taylor Expansion:

$$\sin(y) = y + h.o.t. \Rightarrow \sin(y) \approx y$$



Linearized Equation:

$$\ddot{y} = -\frac{b}{ml^2} \dot{y} - \frac{g}{l} y + \frac{T_c}{ml^2}$$

State-variable Representation

$$\ddot{y} = -\frac{b}{ml^2} \dot{y} - \frac{g}{l} y + \frac{T_c}{ml^2} \Rightarrow \text{Reduce to first order equations:}$$

State Variable Representation

$$\begin{aligned} x_1 &= y & \dot{x}_1 &= x_2 \\ x_2 &= \dot{y} & \dot{x}_2 &= -\frac{b}{ml^2} x_2 - \frac{g}{l} x_1 + \frac{T_c}{ml^2} \end{aligned}$$

$$x \equiv \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, u \equiv T_c \Rightarrow \dot{x} = \begin{bmatrix} 0 & 1 \\ -\frac{g}{l} & -\frac{b}{ml^2} \end{bmatrix} x + \begin{bmatrix} 0 \\ \frac{T_c}{ml^2} \end{bmatrix} u = Ax + Bu$$

Is this state-space representation unique?

Linearization

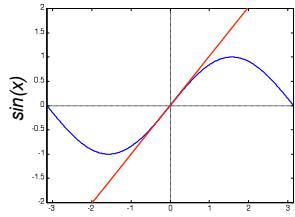
What happens around $\theta=\pi$?

$$\theta = \pi + x \Rightarrow \ddot{x} = -\frac{b}{ml^2} \dot{x} - \frac{g}{l} \sin(\pi + x) + \frac{T_c}{ml^2}$$

$$\ddot{x} = -\frac{b}{ml^2} \dot{x} + \frac{g}{l} \sin(x) + \frac{T_c}{ml^2}$$

By Taylor Expansion:

$$\sin(x) = x + h.o.t. \Rightarrow \sin(x) \approx x$$



Linearized Equation:

$$\ddot{x} = -\frac{b}{ml^2} \dot{x} + \frac{g}{l} x + \frac{T_c}{ml^2}$$

State-variable Representation

$$\ddot{x} = -\frac{b}{ml^2} \dot{x} + \frac{g}{l} x + \frac{T_c}{ml^2} \rightarrow \text{Reduce to first order equations:}$$

State Variable Representation

$$\begin{aligned} x_1 &= x \\ x_2 &= \dot{x} \end{aligned} \Rightarrow \begin{aligned} \dot{x}_1 &= x_2 \\ \dot{x}_2 &= -\frac{b}{ml^2} x_2 + \frac{g}{l} x_1 + \frac{T_c}{ml^2} \end{aligned}$$

$$x \equiv \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, u \equiv T_c \Rightarrow \dot{x} = \begin{bmatrix} 0 & 1 \\ \frac{g}{l} & -\frac{b}{ml^2} \end{bmatrix} x + \begin{bmatrix} 0 \\ \frac{1}{ml^2} \end{bmatrix} u = Ax + Bu$$

Is this state-space representation unique?

State Transformation

We consider the linear, time-invariant system

$$\begin{aligned}\dot{x} &= Ax + Bu, \\ y &= Cx + Du.\end{aligned}$$

We define the state transformation

$$x(t) = Tz(t) \Leftrightarrow T^{-1}x(t) = z(t)$$

Then we can write

$$\begin{aligned}T\dot{z} &= ATz + Bu \Rightarrow \dot{z} = T^{-1}ATz + T^{-1}Bu \\ y &= CTz + Du.\end{aligned}$$

to obtain

$$\begin{aligned}\dot{z} &= \tilde{A}z + \tilde{B}u \\ y &= \tilde{C}z + Du\end{aligned}\quad \boxed{\tilde{A} = T^{-1}AT, \tilde{B} = T^{-1}B, \tilde{C} = CT, \tilde{D} = D}$$

The state-space representation is NOT unique!

Solution of State Equation

Time-invariant Dynamics:

We consider the linear, time-invariant, homogeneous system

$$\dot{x} = Ax$$

where A is a constant $n \times n$ matrix. The solution can be written as

$$x(t) = e^{At}c$$

where

$$e^{At} = I + At + A^2 \frac{t^2}{2} + A^3 \frac{t^3}{3!} + \dots$$

We can note that

$$\frac{de^{At}}{dt} = Ae^{At}$$

Then,

$$\dot{x} = Ae^{At}c = Ax$$

Solution of State Equation

Let us assume that $x(\tau)$ is known. Then,

$$x(\tau) = e^{A\tau} c \Rightarrow c = e^{-A\tau} x(\tau)$$

The homogeneous solution can be finally written as

$$x(t) = e^{A(t-\tau)} x(\tau)$$

We consider now the linear, time-invariant, non-homogeneous system

$$\dot{x} = Ax + Bu$$

We assume a “particular” solution of the form

$$x(t) = e^{At} c(t)$$

Then,

$$\dot{c}(t) = e^{-At} Bu(t) \Rightarrow c(t) = \int_T^t e^{-A\lambda} Bu(\lambda) d\lambda$$

and

$$x(t) = \int_T^t e^{A(t-\lambda)} Bu(\lambda) d\lambda$$

Solution of State Equation

The overall solution can be written as

$$x(t) = e^{A(t-\tau)} x(\tau) + \int_T^t e^{A(t-\lambda)} Bu(\lambda) d\lambda$$

At $t=\tau$

$$x(\tau) = x(\tau) + \int_T^\tau e^{A(\tau-\lambda)} Bu(\lambda) d\lambda \Rightarrow T = \tau$$

We finally can write the solution to the state equation as

$$x(t) = e^{A(t-\tau)} x(\tau) + \int_\tau^t e^{A(t-\lambda)} Bu(\lambda) d\lambda$$

and the system output as

$$y(t) = Cx(t) + Du(t) = Ce^{A(t-\tau)} x(\tau) + \int_\tau^t Ce^{A(t-\lambda)} Bu(\lambda) d\lambda + Du(t)$$

Note that B , C and D can be functions of time.

Solution of State Equation

Time-variant Dynamics:

We consider the linear, time-variant, homogeneous system

$$\dot{x} = A(t)x$$

where A is a time-variant $n \times n$ matrix. The solution can be written as

$$x(t) = \Phi(t, \tau)x(\tau)$$

where $\Phi(t, \tau)$ is known as the “state-transition” matrix. For time-invariant systems, the state transition matrix is only function of $t - \tau$,

$$\Phi(t, \tau) = e^{A(t-\tau)}$$

We can write the state and output as

$$x(t) = \Phi(t, \tau)x(\tau) + \int_{\tau}^t \Phi(t, \lambda)B(\lambda)u(\lambda)d\lambda$$

$$y(t) = C(t)x(t) + D(t)u(t)$$

$$= C(t)\Phi(t, \tau)x(\tau) + \int_{\tau}^t \Phi(t, \lambda)C(\lambda)B(\lambda)u(\lambda)d\lambda + D(t)u(t)$$

Solution of State Equation

Properties of the state transition matrix:

$$\dot{\Phi}(t, \tau) = A(t)\Phi(t, \tau)$$

$$\Phi(t, t) = I$$

$$\Phi(t_3, t_1) = \Phi(t_3, t_2)\Phi(t_2, t_1)$$

$$\Phi(t, t) = [\Phi(t, \tau)]^t$$

For time-invariant systems: $\Phi(t_2, t_1) = \Phi(t_2 - t_1)$

$$\Phi(0) = I \quad e^{A0} = I$$

$$\Phi(t)\Phi(\tau) = \Phi(t + \tau) \quad \Rightarrow \quad e^{At}e^{A\tau} = e^{A(t+\tau)}$$

$$\Phi^{-1}(t) = \Phi(-t) \quad (e^{At})^{-1} = e^{-At}$$

NOTE: $e^{At}e^{Bt} = e^{(A+B)t}$ only if $AB = BA$.

Solution of State Equation

Solution by the Laplace Transform:

We consider the linear, time-invariant system

$$\begin{aligned}\dot{x} &= Ax + Bu, \\ y &= Cx + Du.\end{aligned}$$

We Laplace transform the state equation to obtain

$$\begin{aligned}sX(s) - x(0) &= AX(s) + BU(s) & L[\dot{x}(t)] &= sX(s) - x(0) \\ X(s) &= L[x(t)] & U(s) &= L[u(t)]\end{aligned}$$

And we solve to obtain

$$X(s) = (sI - A)^{-1}x(0) + (sI - A)^{-1}BU(s)$$

Solution of State Equation

$$X(s) = (sI - A)^{-1}x(0) + (sI - A)^{-1}BU(s)$$

We inverse Laplace transform to obtain

$$x(t) = e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$$

where we have used that

$$\begin{aligned}L[e^{At}] &= (sI - A)^{-1} \\ L\left[\int_0^t f(t-\tau)g(\tau)d\tau\right] &= f(s)g(s)\end{aligned}$$

State Transformation

$$X(s) = (sI - A)^{-1} x(0) + (sI - A)^{-1} B U(s)$$

We Laplace transform the output equation to obtain

$$Y(s) = CX(s) + DU(s)$$

Assuming $x(0)=0$ and combining state and output equations we obtain the transfer function

$$Y(s)/U(s) = C(sI - A)^{-1} B + D$$

The transfer function does NOT depend on the state choice because it represents the input-output relationship.

Given two state space representations

$$\dot{x} = Ax + Bu, \quad \dot{z} = \tilde{A}z + \tilde{B}u$$

$$y = Cx + Du, \quad y = \tilde{C}z + Du$$

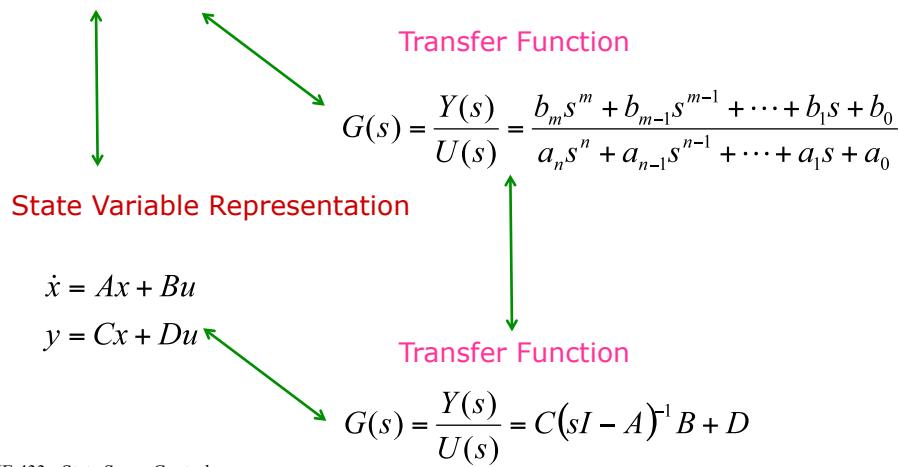
$$Y(s)/U(s) = \tilde{C}(sI - \tilde{A})^{-1} \tilde{B} + \tilde{D} = C(sI - A)^{-1} B + D$$

Proof: In class

Model Representation

Scalar Differential Equation

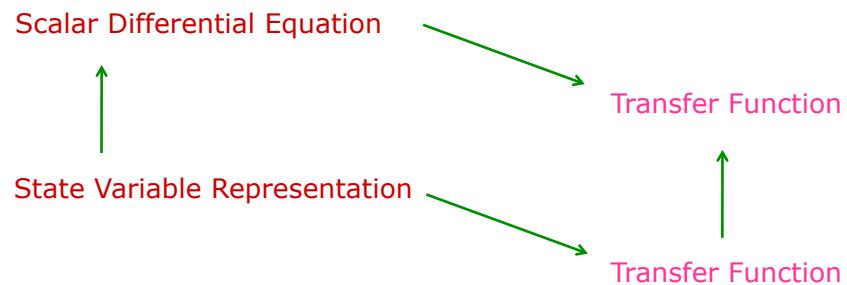
$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_1 \dot{y} + a_0 y = b_m u^{(m)} + b_{m-1} u^{(m-1)} + \cdots + b_1 \dot{u} + b_0 u$$



Model Representation

Example: $\dot{p} = -2p + 2q + 24u$
 $\dot{q} = 4p - 9q + 4\dot{u} + 2u$

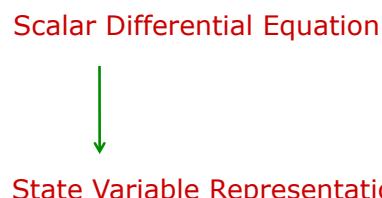
Find: - Transfer function between $q(t)$ and $u(t)$
- Scalar ODE for $q(t)$



Model Representation

Example: $\ddot{y} + 3\dot{y} + 4\dot{y} + 2y = u$

Find: - State variable representation



Model Representation

Example:
$$\frac{Y(s)}{U(s)} = \frac{6}{s^2 + 5s + 6}$$

Find: - State variable representation

Transfer function

State Variable Representation

Model Representation

Example: Find: - State variable representation

$$\ddot{y} + 3\dot{y} + 4\dot{y} + 2y = 2\dot{u} + u \quad \text{Scalar Differential Equation}$$

State Variable Representation

$$\frac{Y(s)}{U(s)} = \frac{s + 6}{s^2 + 5s + 6}$$

Transfer function

State Variable Representation

Model Representation

$$G(s) = \frac{Y(s)}{U(s)} = \frac{b_{n-1}s^{n-1} + b_{n-2}s^{n-2} + \dots + b_1s + b_0}{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0} = \frac{Y(s)}{X(s)} \frac{X(s)}{U(s)}$$

$$\frac{X(s)}{U(s)} = \frac{1}{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0}, \frac{Y(s)}{X(s)} = b_{n-1}s^{n-1} + b_{n-2}s^{n-2} + \dots + b_1s + b_0$$

Choosing $x_1 = x^{(n-1)}, x_2 = x^{(n-2)}, \dots, x_{n-1} = x^{(1)}, x_n = x$

$$A = \begin{bmatrix} -a_{n-1} & -a_{n-2} & \dots & -a_1 & -a_0 \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, C = [b_{n-1} \ b_{n-2} \ \dots \ b_1 \ b_0] D = 0$$

Controller Form

Model Representation

$$G(s) = \frac{Y(s)}{U(s)} = \frac{b_{n-1}s^{n-1} + b_{n-2}s^{n-2} + \dots + b_1s + b_0}{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0}$$

$$(s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0)Y(s) = (b_{n-1}s^{n-1} + b_{n-2}s^{n-2} + \dots + b_1s + b_0)U(s)$$

$$Y(s) = s^{-1}(b_{n-1}U(s) - a_{n-1}Y(s)) + s^{-2}(b_{n-2}U(s) - a_{n-2}Y(s)) + \dots + s^{1-n}(b_1U(s) - a_1Y(s)) + s^{-n}(b_0U(s) - a_0Y(s))$$

Choosing $x_1 = y^{(n-1)}, x_2 = y^{(n-2)}, \dots, x_{n-1} = y^{(1)}, x_n = y$

$$A = \begin{bmatrix} 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & \dots & 0 & \vdots \\ \vdots & \ddots & \ddots & \ddots & -a_{n-2} \\ 0 & 0 & \dots & 1 & -a_{n-1} \end{bmatrix}, B = \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_{n-2} \\ b_{n-1} \end{bmatrix}, C = [0 \ 0 \ \dots \ 0 \ 1] D = 0$$

Observer Form

Model Representation

$$G(s) = \frac{Y(s)}{U(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0} = \frac{k_1}{s + p_1} + \dots + \frac{k_n}{s + p_n}$$

Choosing $\dot{x}_i = -p_i x_i + u$
 $y_i = k_i x_i$

$$y = \sum_{i=1}^n y_i$$

$$A = \begin{bmatrix} -p_1 & 0 & \dots & 0 & 0 \\ 0 & -p_2 & \dots & 0 & 0 \\ 0 & 0 & \ddots & 0 & 0 \\ \vdots & \vdots & \vdots & -p_{n-1} & 0 \\ 0 & 0 & \dots & 0 & -p_n \end{bmatrix}, B = \begin{bmatrix} 1 \\ 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}, C = \begin{bmatrix} k_1 & k_2 & \dots & k_{n-1} & k_n \end{bmatrix}, D = 0$$

Modal Form