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Linearization
Dynamic System: x™ = f(x(”_l),x(”_z),...,x(l),x,u)
0=f(0,0,...,0,x0,u0) Equilibrium
Denote  Ox=Xx-Xx,,0u=u-1u,

5™ = f(éx("_]),éx(”_z),...,5x(1),xo +0x, u, + (SU)

Taylor Expansion

I n, o
-1) 2
K" = f(0,0, 2,0,x,,u, )+ =y U = K" 4
0x 0,0,0.,0,%, 11, 0x 0,0,...,0,x, .11,
d ) ad
% "+ ¥ ox + LA ou
ax 0,0,...,0,x, ,u, ax 0,0,...,0,x, ,u, au X, U,
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Linearization
Dynamic System: )'c=f(x,u) xER" . u€R"
0=f(x,,u,)  Equilibrium
Denote  OXx=x-Xx,,0u=u-u,

o= f(x, +x,u, +06u)

Taylor Expansion

0 0
(5)'sz(x0,u0)+l 5x+l ou
0 X, U, X, U,
af af .
=—| ,G=—| = QOi=Fox+Gou
ax xl) ’u() au x() u()
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Linearization
o = Fox + Gou
N EA A ]
F= A = 8)361 a):cn G= o = a]f/ll aL:‘m
ox, ox, | ou, du,,
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Laplace Transform

Function f(?) of time
Piecewise continuous and exponential order |f(7)| < K

F(s)= [f(t)e *dt CFG)- ro) == i F(s)e™ds
0- 2'79 a= jo

0- limit is used to capture transients and discontinuities at =0
s is a complex variable (o+jw)

There is a need to worry about regions of convergence of
the integral

Units of s are sec'l=Hz
A frequency

If f{2) is volts (amps) then F(s) is volt-seconds (amp-seconds)
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Laplace Transform Examples
Step function - unit Heavyside Function

_ ) 0, forr<0
After Oliver Heavyside (1850-1925)  u(¢) =
1, fort=0
) 00 e—sl“oo e—(CT+jLL))l“Oo
F(s)= fu(t)e™*dt = [e™*'dt= - : = if 050
0 0— K ‘ o+ jw ‘ K
0 0
Exponential function
After Oliver Exponential (1176 BC- 1066 BC)
o0 o e—(s+a)t‘°° 1
F(s)= fe_ate_Stdt = fe_(Ha)tdt = = ifo>a
0 0 s+a ‘0 s+a

Delta (impulse) function 6(2)

F(s)= [(t)e™*'dt=1 forall s
0-
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Laplace Transform Table

Signal Waveform Transform
impulse o(t) 1
step u(t) !
S
ramp tu(t) Lz
S
exponential e u(t) L
sS+a
damped ramp —at 1
te u(t) (s+a)2
. ) B
sine t t
sin( B )u(7) 2.5
. S
cosine .
cos(ﬂt)u(t) S2+/32
damped sine —at B
e~ sin( Bt u(r) (s+a)2+/32
damped cosine —at s+a
e~ cos(Bt)u(t) 7(“0‘)24_/32
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Laplace Transform Properties

Linearity: (absolutely critical property)
L3410+ By (0} = ALY (D + BLf (0} = AF () + BFy(s)

Integration property: {ff(r)dr} FES)
Differentiation property: {df(t)} sF(s)- 1(0-)
2
TSN 255~ 5700 - 1'0-)
dt

, { d" (1)

o } =s"F($)=5"f(0-) =" f1(0-) = o= £ (0-)
t
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Laplace Transform Properties
Translation properties:
s-domain translation: L fOy=F(s+a)

t-domain translation: L{f(t —a)u(t- a)}= e “F(s) for a>0

Initial Value Property: lim f(z) = lim sF(s)
t—0+ §—>00
Final Value Property: tlim f()= 1iI%SF(S)
—>00 s—>

If all poles of F(s) are in the LHP
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Laplace Transform Properties

Time Scaling: ﬁ{f(af)}=;F(2)
Multiplication by time: Litf (1)} = _dl;f)
Convolution: L{j;f(r)g(t—r)dr}=F(s)G(s)
Time product: LU/ O)g(0)} =21@7- [ )G - A
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Laplace Transform

Exercise: Find the Laplace transform of the following waveform
4(s+2)
SGZ +4 ]

Exercise: Find the Laplace transform of the following waveform

£(t)=]2 +2sin(2¢) - 2cos(2¢) (7) F(s)=

£ = u(t) +5 j(’) sin(4x Jdx F(s)= Zs : 5)6(:2:8106 )
401 d[5te_40'l 10s + 200
F(@) =5 "u(t) + E=—(r) _Us+ 209
dt Fe) (s+40)

Exercise: Find the Laplace transform of the following waveform

f(t)=Au(t)-2Au(t-T)+ Au(t - 27T) F(S):M
S
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Laplace Transform

Complex frequency domain
' (s domain)
Differential Laplace
ransform

equation

Classical
techniques

Response
signal

Algebraic
equation

Algebraic
techniques
Response
transform

Time domain (¢ domain)

Inverse Laplace
transform £

The diagram commutes

Same answer whichever way you go
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Solving LTI ODE’s via Laplace Transform

YD ra v Vsray=bu+b u" Dt bu

Initial Conditions: 3 D0)...,90)u"D(0)...,u(0)
d'f] & NN
Recall L{dtk} =s"F(s)- ,Eo f (0)s

n-1 n-1
s"Y(s) - E Yr=0(0)s? +2 a,
=0 =

s'Y(s)- iy(i‘l'j)(O)sj} = ib,. I:SiU(S) - iu(i‘]'f)(O)sj
7=0 i= 7=0

n-1 i-1 n i-1

(i-1-7) J (i-1-7) J

b m b m-1 b b E ai y (O)S B E bi E u (O)S

ST+ ST+ s+ = < o <
-1 1 0 i=0 J=0 i=0 Jj=0

Y(s) =t Uls)+ p =

st +a, s+ tasta, s"+a, s+ tasta,

For a given rational U(s) we get Y(s)=0(s)/P(s)
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Computing Transfer Functions via Laplace Transform
()

Y ia YV wvay=b u" Dby

Assume all Initial Conditions Zero:

(s" +a,_ " +-+as+a, )/(s) = (bm_ls'”‘1 +-+bs+b, )J(s)

Output Input
m-1
AN Y(s) = nbm_ls n: +b;s + b, Uls) = B(s) U(s)
s"+a, s 4+ as+a, A(s)
m-1
H(s) = Y(s) _ b, 8" +-+bs+h

n n-1
U(s) s"+a, " +--+as+a,

e =)= (- 7,)
(s=p)(s=py)-(s=-p,)
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Laplace Transform

Exercise: Find the Laplace transform 7{s)

dant)

4 3

——=+06v(t) =4u() V(is)=—F——~<—-——

dt (5) s(s+6) s+6
v(0-)=-3

Exercise: Find the Laplace transform V(s)
2
d vgt) +4 ) +3v(t) =5¢7 V(s)= > 2

dt dt

(s+1Xs+2Xs+3)_s+1
v(0-)=-2,v'(0-)=2

What about v(?)?

ME 343 — Control Systems
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Rational Functions

We shall mostly be dealing with TFs which are
rational functions - ratios of polynomials in s

m m-1
F(s) = bmsn +bm_1sn_] +--+bs+b,
as +a, s +---+as+a,
_ g (5=2)-2)(s-2,)
(s=p)(s—py)---(s=p,)
p, are the poles and z; are the zeros of the function
K is the scale factor or (sometimes) gain
A proper rational function has n=m

A strictly proper rational function has n>m
An improper rational function has n<m
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Partial Fraction Expansion - Residues at Simple Poles

Functions of a complex variable with isolated, finite
order poles have residues at the poles

F(S)=K(s—zl)(s—zz)---(s—zm)= k, N k, et k,
(s=p)s=py))(s=p,) (s=p) (s-py) (s-p,)

_ _k(s-p)  k(s-p) k,(s=p;)
R e Py AL A Fon

Residue at a simple pole: &k, =1lim(s - p,)F(s)
S=p;

ME 343 — Control Systems 17

Partial Fraction Expansion - Residues at multiple poles

F(S)=K(s—zl)(s—zz)--r-(s—zm)= k, N k, e k. :
(s=p) (s-p) (-p) (s-p)
r-j
Residue at a multiple pole: k,=—— lim ,[(s—pi)rF(s)], j=lor
(”—])!s—>pi ds’ =7
2
Example: 25° +5s _ k, N k, N k,
(s+1)3 s+1 (S+1)2 (s+l)3
+1)(252 + __ li d(g+|)3(2g2+55) _

2 3.2
=1 és@;}? [(sﬂ() (+21g)3+5$)} _
S
e a

(s+1)°

li 3 im
S_I)I% (S +1)3 2 s—1ds
| 3

L_l(m) =L_1(si1+ (s:1)2 _(sf1)3

ME 343 — Control Systems 18
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Partial Fraction Expansion - Residues at Complex Poles

Compute residues at the poles 1im(s-a)F(s)

s—a

Bundle complex conjugate pole pairs into second-
order terms if you want ... but you will need to be
careful!

(s-a-jﬁ)(s-a+jﬁ)=E2-2as+62+/32):|

Inverse Laplace Transform is a sum of complex
exponentials. But the answer will be real.

ME 343 — Control Systems 19

Inverting Laplace Transforms in Practice

We have a table of inverse LTs
Write F(s) as a partial fraction expansion

Byys™ + by 15" ek bys + by

F(s)=

n n-1
a,s +a,_ 1S +-+ais+ag

_g = 2)s=2p) (5= 2p)
(s=p(s=pa)--(s=py)

% 93 a3

33 q
+ + +o+
(s=p1) (=p2) =P (s-p3) (-p3)°  (-py)

o

Now appeal to linearity to invert via the table
Surprise!

Nastiness: computing the partial fraction expansion is best
done by calculating the residues

ME 343 — Control Systems 20
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Inverse Laplace Transform

Exercise: Find the Inverse Laplace transform of

%
20(s + k k k
Fiy=—205) s p= M2
(s+1)(s° +2s+5) s+1 s+1-72 s+1+j2
k= lim (s+D)F(s)= 20(s+3) =10
s—-1 ST+ 2s+ 5052 1
o
o . _20(s+3) el n
kz—séllr{l+2j(s+l 2/)F(s) 7(S+1)(S+]+2j)5=_1+2j 5-5)=52e
(—1+j2)t+j§ﬂ (—1—j2)t—j§ﬂ
F(t)=10e™" +5+/2¢ 4 452 4 lu(r)
= [106“’ +10+/2¢7" cos(2f + Sir)]u(t)
ME 343 — Control Systems 21
Inverse Laplace Transform
Exercise: Find v
dawv(t
) 4 6u(t) = 4u(r) Vi)t 3
t s(s+6) s+6
v(0-) = -3 2 11
V(1) = gu(t) - ?e_ﬁtu(t)
Exercise: Find v
2
V0 4N 3y =56 V()= > _2
dt dt (s+1)Xs+2)s+3) s+1

v(0-)=-2,v'(0-) =2 (1 - 2y D e
v(l‘)— Ee -5e +5€ u(l)

What about v(?)?

ME 343 — Control Systems 22
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Not Strictly Proper Laplace Transforms

s>+ 652 +125+8

S2+4S+3

Convert to polynomial plus strictly proper rational function
Use polynomial division

Find the inverse LT of F(s)=

S+2

s2+4s+3

05 05
=S+24+4——+——
s+1 s+3

F(s)=s+2+

Invert as normal

() = d‘;&’) +28()+0.5¢7" +0.5¢7 |u(r)
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Impulse Response
Dirac’s delta: f:u(r)é(t —T)dt = u(t)

Integration is a limit of a sum

U

u(t) is represented as a sum of impulses
By superposition principle, we only need unit impulse response

h(t —‘L’) Response at ¢ to an impulse applied at = of amplitude u(7)

System Response: u(?) h v(1)

(1) = ﬁu(r)h(t _1)dt

ME 343 — Control Systems 24
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Impulse Response

t-domain:  u(s) h (1)
Impulse response
y(t) = j(') u(t)h(t =t)dr u(t)=0()= y(t)=h(r)

The system response is obtained by convolving the input with
the impulse response of the system.

Convolution: L{ﬁ:ou(r)h(t —1)dt} = H(s)U(s)

Y(s)
Impulse response

Y(s)= H(s)U(s) u(t)=0(t)=U(s)=1=>Y(s) = H(s)

The system response is obtained by multiplying the transfer
function and the Laplace transform of the input.

s-domain: U(s)

H

ME 343 — Control Systems 25
Block Diagrams
Series: — G — G, —
G =G,G,
G
Parallel: }+
— G2
G=G +G,
ME 343 — Control Systems 26
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Block Diagrams
Negative Feedback:

R Reference input
R . @fls G a0 E=R-B Error signal
C=GE Output
B(s) H
B=HC Feedback signal
C G
C=GR-GHC=(1+GH)C=GR=>—=———
R (1+GH)
E 1
E=R-HGE=(1+GH)E=R=>—=——
R (1+GH)

Rule: Transfer Function=Forward Gain/(1+Loop Gain)

ME 343 — Control Systems 27

Block Diagrams
Positive Feedback:
R Reference input
k) @t G . E-R+B Error signal
C=GE Output
B(s) H
B=HC Feedback signal
C G
C=GR+GHC=(1-GH)C=GR= —=———
R (-GH)
E 1
E=R+HGE=(1-GH)E=R=>—=—"——
R (-GH)

Rule: Transfer Function=Forward Gain/(1-Loop Gain)

ME 343 — Control Systems 28
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Block Diagrams

Moving through a branching point:

R(s) G LCw RO[" o] €
Moving through a summing point:
R(s) G <o = R o L@ w
B(s) G
B(s)T
ME 343  Control Systems 29
Block Diagrams
Example:
Hl
R(s) . T G, . l @l G, Cs)
| H2 J
R(s) G,G,G; )

ME 343 — Control Systems

1+ H,G,G; + H,G,G,

30
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Mason’s Rule

]5(6
U(s) + Hl + H2 + H3 + Y(s)
H, ﬁ | H,

Signal Flow Graph

nodes branches

U(s)

ME 343 — Control Systems 31

Mason’s Rule

Path: a sequence of connected branches in the direction of the
signal flow without repetition

Loop: a closed path that returns to its starting node

Forward path: connects input and output

Y(s) 1

U(s) A 2, G

i

G(s)=

G, = gain of the ith forward path
A =the system determinant

= I-E(all loop gains)
+ E (gain products of all possible two loops that do not touch)

- E (gain products of all possible three loops that do not touch)
+ e

A, = value of A for the part of the graph that does not touch the ith forward path

ME 343 — Control Systems 32
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Mason’s Rule

Example:

U(s)

Y(s) HH,H,+H, - H,H,H,
U(s) 1-HH,-H,H,-HH,-HHHH, +HHHH,

ME 343 — Control Systems 33

Impulse Response

00

Dirac’s delta: fo u(t)o(t -t)dt = u(t)

Integration is a limit of a sum

U

u(t) is represented as a sum of impulses
By superposition principle, we only need unit impulse response

h(t —‘L’) Response at ¢ to an impulse applied at = of amplitude u(7)

System Response: u(?) h v(1)

(1) = J:ou(r)h(t _1)dt

ME 343 — Control Systems 34
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Impulse Response

t-domain:  u(s) h (1)
Impulse response
y(t) = J(') u(t)h(t =t)dr u(t)=0()= y(t)=h(r)

The system response is obtained by convolving the input with
the impulse response of the system.

Convolution: L{ﬁ:ou(r)h(t —1)dt} = H(s)U(s)

s-domain: U(s) Y(s)

Impulse response

Y(s)= H(s)U(s) u(t)=0(t)=U(s)=1=>Y(s) = H(s)

The system response is obtained by multiplying the transfer
function and the Laplace transform of the input.

ME 343 — Control Systems 35

H

Time Response vs. Poles

Real pole: H(s)= = h(t)=e" Impulse
i s+0 Response
0.8 \\ o>0 Stable
06 \ L o< Unstable
h(t) ,
04Ny
N e
LN 1 _
0.2 AN T=— Time Constant
: DS (o)
0 \w\
0 1.0 2.0 3.0 4.0
T Time (sec)
t=r @
ME 343 — Control Systems 36
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Time Response vs. Poles

Real pole:
H(s)= = h(t)=0e™” Impulse
§+0 Response
T=— Time Constant
o
1 ot
Y(s)= —=y(t)=1-¢ Step
S+0s Response
ME 343 — Control Systems 37
Time Response vs. Poles
2
1)
Complex poles: H(s)=— ) 5 Impulse
s*+28w,s + W, Response
a)Z

R v )

) I
@, : Undamped natural frequency 6= Sin,]{\ e

C: Damping ratio

2
w

H = n
() (s+a+ja)dXs+o—ja)d) “n
_ w; | Rew
(s+0)2 +a)j L—oa by

|
o=C%w,0,=w1-E° I\ ___l
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Time Response vs. Poles

Complex poles:
2

W w :
H(s)= n — h(t) = ————e " sin(w,¢
T 27 i B
S N A Impulse

' Response

h(r)

o>0 Stable

o<0 Unstable

~0.6 .
708/’
1 5 10 15 20 25 30
Time (sec)
ME 343 — Control Systems 39

Time Response vs. Poles
Complex poles:

> ) .
H(s) = n — h(t)=——e " sin(w,t
(s) Crtofearlo2?) () ] (0,1)
(=0
1.0 = 0.1 Impulse
08 /\;ggiﬁ / N\ Response
vl RS0 | [\
0.4 |- Q\E&\/%gfg / \
¥y 0.0 {,:01'9 v ; ’
—on S B\
\
—-0.4
o \\_//
—-0.8 / \ /
o N/ \/

0

[S)
N
(=2
o
)
™)
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Time Response vs. Poles
Complex poles:

w; 1 | o .
Y(s)= 5+ Ca),,)z " a)f(l e ); —=y(t)=1-e _cos(a)dt)+ w—dsm(wdt)
2.0 . ;
18 /\/ §.;&O — //\ Step
g — /\y H 7 Response
y@® 1.0
os| A N\
OO 2 4 6 8 10 12
ME 343 — Control Systems " 41
Time Response vs. Poles
>
Complex poles: H(s)=s2 +2§a:s+a)2
>
(5+to,f +2(-7)
CASES:
g =0:s° +(Uj Undamped
é‘<1:(s+é’wn)2+a)5(l—é'2) Underdamped
C =1:(S+a)n)2 Critically damped

§>1:E+€’+\/27—1),nlg+é_m)un: Overdamped

ME 343 — Control Systems 42
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Time Response vs. Poles

STABLE

75

4 Im(s)

L

UNSTABLE

A

X
LHP RHP
o -
Re(s)
ME 343 — Control Systems
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Time Domain Specifications

0.1

ME 343 — Control Systems

44
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Time Domain Specifications

1- The rise time ¢, is the time it takes the system to
reach the vicinity of its new set point

2- The settling time ¢, is the time it takes the system
transients to decay

3- The overshoot M, is the maximum amount the
system overshoot its final value divided by its final
value

4- The peak time ¢, is the time it takes the system to
reach the maximum overshoot point

p a)n ll_CZ r wn

L
M,=e V1=t S=%6
ga)n
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Time Domain Specifications

Design specification are given in terms of

t,t,, M1,

ro p)

These specifications give the position of the poles

w,,§=0,0,

Example: Find the pole positions that guarantee

t, =0.6sec, M, <10%,7, <3sec

ME 343 — Control Systems 46
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Time Domain Specifications

Additional poles:

1- can be neglected if they are sufficiently to the left
of the dominant ones.

2- can increase the rise time if the extra pole is within
a factor of 4 of the real part of the complex poles.

Zeros:

1- a zero near a pole reduces the effect of that pole in
the time response.

2- a zero in the LHP will increase the overshoot if the
zero is within a factor of 4 of the real part of the
complex poles (due to differentiation).

3- a zero in the RHP (honminimum phase zero) will
depress the overshoot and may cause the step
response to start out in the wrong direction.
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Stability

Y(s) b,s" +b, 8"+ +bs+b,

n-1

R(s) s"+a, 8" +-+as+aq,

Y(s) _ g (5=2)(s=2)(s~2,)
R(s)  (s=p)(s—py)-(s-p,)
Y(S) = kl + k2 kn

+oot
R(s) (s-p) (s-p,) (s-p,)

Impulse response:
Rs)=l=Y(s)=—t 4 Fo o R
(s=p) (s-py) (s-p,)

y(t) =ke™ + ke’ +---+k e’

ME 343 — Control Systems 48
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Stability

y(t) =ke™ +k,e™ +---+ ke
We want: e ———0 Vi=1l..n

Definition: A system is asymptotically stable (a.s.) if

Re{p,} <0 Vi
Characteristic polynomial:  a(s)=s"+a, s"" +---+a;s +aq,
Characteristic equation: a(s)=0
ME 343 — Control Systems 49
Stability

Necessary condition for asymptotical stability (a.s.):
a>0 Vi
Use this as the first test!

If any a;<0, the the system is UNSTABLE!

Example: sP+5-2=0
(s+2)(s=1)=0

ME 343 — Control Systems 50
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Routh’s Criterion

Necessary and sufficient condition
Do not have to find the roots p,!

Routh’s Array:

n
s 1 a a, - ,> a Depends on whether
n .
" a oay oa; - n is even or odd
-2
"2 b b, b
e ¢ C b, _aq9, _azy b, =a1a4_a5’ b, _4a,—a
1 2 3 a a a
Sn_4 d d bay - ab, bas - ab,
1 2 ¢ = , G = B
: b b
.0 d - ob, - b, d,- ¢b, - byc, ’
S an \ . G . G
ME 343 — Control Systems 51

Routh’s Criterion

How to remember this?

Routh’s Array:

s my my,  mpy m;=a; 5,

n-1

S My My, My m,;=a;

n-2
S m m m

. 31 32 33 My, My,

e

s My, My, Ny m. m. .
i-1,1 i-1,j+1 .
. mi L = — ,Vl 2 3
J
m;_y,

ME 343 — Control Systems 52
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Routh’s Criterion

The criterion:

e The system is asymptotically stable
if and only if all the elements in the first
column of the Routh’s array are positive

e The number of roots with positive real
parts is equal to the number of sign
changes in the first column of the Routh
array

ME 343 — Control Systems

53

Routh’s Criterion

Example 1: s+as+a,=0
Example 2: s’+as’+as+a; =0
Example 3: s°+4s° +3s* +25° +5° +45+4=0

Example 4: S +557+(k-6)s+k=0

ME 343 — Control Systems

54
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Routh’s Criterion

Example: Determine the range of K over which the
system is stable

R(s) + s+1
X K s(s-1)s+6)

Y(s)

ME 343 — Control Systems 55

Routh’s Criterion

Special Case I: Zero in the first column

We replace the zero with a small positive constant
¢>0 and proceed as before. We then apply the
stability criterion by taking the limit as ¢—0

Example: s +25° +45 +85+10=0
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Routh’s Criterion

Special Case II: Entire row is zero

This indicates that there are complex conjugate pairs.
If the ith row is zero, we form an auxiliary equation
from the previous nonzero row:

a,(s) = ﬁlsm + ﬁzsi_l + /3)3Si_3 oo

Where g; are the coefficients of the (i+1)th row in the
array. We then replace the ith row by the coefficients
of the derivative of the auxiliary polynomial.

Example: s +2s*+4s’ +85 +10s+20=0

ME 343 — Control Systems 57

Properties of Feedback

Disturbance Rejection:

Open loop W
VF'— K, A L y

y=K Ar+w
Closed loop w

r— K, A » y
- K A 1
y = r+ w
7 1+K,A 1+K.A

ME 343 — Control Systems 58
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Properties of Feedback

Disturbance Rejection:

Choose control s.t. for w=0,y~r

Open loop: K0=114=>y=r+w

Closed loop: K, >>114=>yzr+0w=r

Feedback allows attenuation of disturbance without
having access to it (without measuring it)!!!

IMPORTANT: High gain is dangerous for dynamic response!!!
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Properties of Feedback
Sensitivity to Gain Plant Changes
Open loop W
r— | KO A +L+ y
T = (y) - AK
r o
Closed loop

"' —@— K. A » y
)it
7 r). 1+4K,

ME 343 — Control Systems 60
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Properties of Feedback

Sensitivity to Gain Plant Changes
Let the plant gain be A4+0d4

oT o4

| : ¢ =—

Open loop T "4
of. 64 1 04 OT
Closed loop: <= <—=—°

= < =
T Al+4K, A T,

c

Feedback reduces sensitivity to plant variations!!!

Sensitivity: S = dT/T =é£
dA/A T dA

Example: St = 1 ST =1
1+ AK
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Steady-state Tracking

The Unity Feedback Case

R(s) + T E(s) C(s) U(s) G(s) Y(s)

E(s) B 1
R(s) 1+C(s)G(s)

fk
Test Inputs: r(t) = El(t) k=0: step (position)
'1 k=1: ramp (velocity)
R(s) = .
g+ k=2: parabola (acceleration)
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Steady-state Tracking

The Unity Feedback Case STzftZr';
R(s) + e E(5) GO(S)/ Y(s)
S}'l
G
C(S)G(S)= O(S)’E(S)=7R(S)9R(S)= k+1
§" | G,(s) S
+ —

Steady State Error: §
Final Value
Theorem

1 . Sn 1 sn—k

e =lime(t) =limsE(s) =lims —————=lm———— —
3 (> ( ) 550 ( ) 0 1+ GO(S) Sk+1 =0 Sn +GG(S) Sk

N

m—
s=05" +G,(0)
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Steady-state Tracking

The Unity Feedback Case ST;'E;;

R(s) o E(s) G, ()7 Y(s)
n n-k
- )
= limnsi
05" +G,(0)

eS

Steady State Error:

Input (k)
Type (n) Step (k=0) Ramp (k=1) Parabola (k=2)
1 1 1
Type O 1+G0(0)=1+1i23C(s)G(s)=l+Kp °° *
1 1 1
Type 1 0 G,(0) " limsC()G() K, *

1 1 1
G,(0) lingsZC(s)G(s) K,

Type 2 0 0
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Steady-state Tracking
K, = El_t)% C(s)G(s) n=0 Position Constant
K, = lin3SC(s)G(S) n=1 Velocity Constant
K, =1lims’C(s)G(s) n=2 Acceleration Constant
s—0

n: Degree of the poles of CG(s) at the origin (the number of
integrators in the loop with unity gain feedback)

e Applying integral control to a plant with no zeros at the
origin makes the system type = I

e All this is true ONLY for unity feedback systems

e Since in Type I systems ¢,=0 for any CG(s), we say that
the system type is a robust property.
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Steady-state Disturbance Rejection

. w(t)=t—'1(t)
The Unity Feedback Case K

W) W=
R(s) + = E(s) CGs) U(Qi G(s) Y(s)
Set r=0. -

Want Y(s)/W(s)=0.

Y(s) _ G(s)
W(s) 1+C(s)G(s)

= T(s) = 5"T,(s)

Steady State Error: e=r-y=-y  Final Value

/ Theorem
1

- ess = yss = hmy(t) = IIII(}SY(S) = III%ST(S)
t— §—> Nind

n

. N
o= im7,(5)
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Steady-state Disturbance Rejection

The Unity Feedback Case

R(s) + = E(s)

C(s)

U(s)

W(s)

+

+

G(s)

Steady State Output:

Type (n) Step (k=0)
Type O *
Type 1 0
Type 2 0

ME 343 — Control Systems

Disturbance (k)
Ramp (k=1)

o

Y(s)

Parabola (k=2)

[ee]

O<*<oo

67

Steady-state Disturbance Rejection

Example:

R(s) + = E(s)

K +—L

W(s)
U (Slk _a
* s(‘m + 1)

Y(s)

K, =0

=

type 1tow

K,=0,K,=0 = typeOtow

ME 343 — Control Systems
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PID Controller
PID: Proportional — Integral — Derivative
P Controller:

Y(s)  C()G(s) R(s) . E(s)
R(s) 1+C(5)G(s)’

E(s) 1

R(s) 1+C(s)G(s)’

cw-k, UL G Y(s)

u)=K,e(r), U(s)=K,E(s)
Step Reference:

R(s) = ! = e, =limsE(s)=lims 1 1_ 1
S 5—0 s=0 14+ KpG(s) s 1+ KpG(O)

. eProportional gain is high
= —1 o0 :
€ =0 KPG(O) — True when ePlant has a pole at the origin

High gain proportional feedback (needed for good tracking)
results in underdamped (or even unstable) transients.
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PID Controller
P Controller: Example (P_controller.m)
R(s) + @ E(s) be U(s) A Y(s)
? s s+l
Y(s) K, G(s) _ K, 4
R(s) 1+K,G(s) s’ +s+(1+K, A)
a)f =1+ KpA 1 1
= = = 0
28w, =1 20, 2J1+K, 4 %7

v Underdamped transient for large proportional gain
v Steady state error for small proportional gain

ME 343 — Control Systems
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PID Controller

PI Controller:
Y(s) _ C(s)G(s)  R(s) +a E(s)
R(s) 1+C(s)G(s)
E(s) 1

R(s) 1+C(s)G(s)

Ve g Y(s)

Cs)=K, +51
A

u(t) =K e(?) + Klfe(‘[)d‘[, U(s)= (Kp + K’)E(s)
Step Reference: 0 S

R(s) =l:>ess =1irr01sE(s) =lims ! l=lim ! =0
s 5=

s (Kp + ?)G(s) A (Kp + I?)G(s)

¢ It does not matter the value of the proportional gain
e Plant does not need to have a pole at the origin. The controller has it!

Integral control achieves perfect steady state reference tracking!!!
Note that this is valid even for K,=0 as long as K;=0

ME 343 — Control Systems 71
PID Controller
PI Controller: Example (PI_controller.m)
Rs) @B | o K | U 4 ¥(s)
rs S +s+l
K
K +—1|G(s
Y(s) ( P s) (s) (Kps+K,)A

R(s) 1+(Kp +KI)G(S) s+ +(1+K,A)s+ K, 4
s

DANGER: for large K, the characteristic equation has roots in the RHP
s* +5° +(1+K,A)s+K,4=0
Analysis by Routh’s Criterion
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PID Controller
PI Controller: Example (PI_controller.m)
s° +5° +(1+K,A)s+K,4=0
Necessary Conditions: 1+K,4>0,K,4>0

This is satisfied because 4>0,K,>0,K,>0

Routh’s Conditions:

s’ 1 1+K,4 1+K,A-K,A4>0
s’ 1 K, 4 U
1
s' 1+K,A-K, A4 K <K+l
s’ K, A 4
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PID Controller

PD Controller:
Y(s) _ C()G(s)  R(s) s e E(s5)
R(s) 1+C(s)G(s)’
Eo) 1
R(s) 1+C(s)G(s)’

Ues) Y(s)

C(s)=K,+Kps G(s)

de(tt) , U(s)= (Kp +K,s )E(S)

ut)=Ke()+K,
Step Reference:

R(s)=1=ess =limsE(s) = lims 1 1_ 1
S 50 s=0 1+ KP+KDS)G(S)S 1+ K ,G(0)

eProportional gain is high

= —2 —> 0 . ..
¢y =0 K”G(O) True when ePlant has a pole at the origin

PD controller fixes problems with stability and damping by adding
“anticipative” action
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PID Controller

PD Controller: Example (PD_controller.m)

R(s) + = E(s) Cls)=K, +Kys U(s) A Y(s)
ree sE s+l
v(s) (K, +Kps)5(s) AK, +Kps)

R(s) 1+(K,+Kps)5(s) s*+(+ K Al +(1+K,4)
w; =1+K,4
26w, =1+K,A4

= =

1+K A 1+K,4

20, 2,1+K, 4

v' The damping can be increased now independently of Kp
v’ The steady state error can be minimized by a large K/)

ME 343 — Control Systems
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PD Controller:

Y(s) | CE)Gs)  R(S) + @ E(s)

R(s) 1+C(s)G(s)’
E(s) 1
R(s) 1+C(s)G(s)’

PID Controller

C(s)=K,+Kps

Ul(s) Y(s)

G(s)

ut)=Ke()+K,

de(tt) , U(s)= (Kp +K,s )E(S)

NOTE: cannot apply pure differentiation.

In practice,

is implemented as

ME 343 — Control Systems
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PID Controller

PID: Proportional — Integral — Derivative

R($) + @ E(s) K 1+L+TS\ U(s) G(s)
T st )

de(?)
dt

u(t)=kK, -e(t) + ]{I{e(r)dr +T,

u(s) =K 1+L+TDS
E(s) "\ T

PID Controller: Example (PID_controller.m)

ME 343 — Control Systems

Y(s)

77

PID Controller: Ziegler-Nichols Tuning

e Empirical method (no proof that it works we
it works well for simple systems)
e Only for stable plants

[l but

¢ You do not need a model to apply the method

ty(@®

/ Slope R = é = reaction rate

Class of plants:

Y(s) Ke'™

ME 343 — Control Systems

U(s) t5+1
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PID Controller: Ziegler-Nichols Tuning

METHOD 1: Based on step response, tuning to
decay ratio of 0.25.

W y(t)

Tuning Table:
14+ Period P Kp _ T
td
T t
PD: K,=09—-,T, ="~

0.25 t, 0.3

2
__J T
/\ t PID: K,=12-—T,=21,T,=0.5t,
l 7 td

ME 343 — Control Systems
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PID Controller: Ziegler-Nichols Tuning

METHOD 2: Based on limit of stability, ultimate
sensitivity method.

R(s) + T E(s) e U(s) G(s) Y(s)

e Increase the constant gain K, until the response

becomes purely oscillatory (no decay - marginally
stable - pure imaginary poles)

e Measure the period of oscillation P,

80
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PID Controller: Ziegler-Nichols Tuning

METHOD 2: Based on limit of stability, ultimate
sensitivity method.

y(1) Tuning Table:

(| /\ K, =05K,

0.45K,,T, =

2

The Tuning Tables are the same if you make:

K,=25,P =4,
td

ME 343 — Control Systems

—_—

\/ Vo
PID: K,6=0.6K,.T, = PTD=Z‘

81

PID Controller: Ziegler-Nichols Tuning

Actuator Saturates:
- valve (fully open)
- aircraft rudder (fully deflected)

u
(Input of the plant)

u

c

(Output of the controller)

ME 343 — Control Systems
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PID Controller: Ziegler-Nichols Tuning

Y(s)

R(s) TE(s) PP AT } SILINETR
- ? S

What happens?

- large step input in r

- large e

large u, — u saturates

eventually e becomes small

u, still large because the integrator is “charged”
u still at maximum

- y overshoots for a long time

ME 343 — Control Systems
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PID Controller: Ziegler-Nichols Tuning
Plant without Anti-Windup:

R & ¢ Plant
s + E { /’ umax uc an

e O—4

ME 343 — Control Systems
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PID Controller: Ziegler-Nichols Tuning

In saturation, the plant behaves as:

kp

kPS + kl

e O—
s + Kakl

o U,

For large K, this is a system with very low gain and
very fast decay rate, i.e., the integration is turned off.

Saturation/Antiwindup: Example (Antiwindup_sim.mdl)

ME 343 — Control Systems
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Controller

R(S) +TE(S) R C(S)
H(s)

C(s)=KD(s)=

Root Locus
Plant
. L
U(s) ) Y(s)
~
Sensor
Y(s) _  CB)GGs)  _C(9)G)

R(s) 1+C(s)G(s)H(s) 1+KL(s)

Writing the loop gain as KL(s) we are interested in tracking

ME 343 — Control Systems

the closed-loop poles as “gain” K varies
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Root Locus
Characteristic Equation:

1+ KL(s)=0

The roots (zeros) of the characteristic equation are the
closed-loop poles of the feedback system!!!

The closed-loop poles are a function of the “gain” K
Writing the loop gain as

_b(s) s"+bs" "+ b, s+D,

L(s)

a(s) s"+as"' +-+a, s+a,

The closed loop poles are given indistinctly by the solution of:
1+ KL(s)=0, 1+K@=O, a(s)+ Kb(s) =0, L(s)=—l
a(s) K

ME 343 — Control Systems
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Root Locus

RL = zeros{l + KL(s) } = roots{den(L) + Knum(L)}

when K varies from 0 to « (positive Root Locus) or
from 0 to -» (negative Root Locus)

K >0:L(s)= IR IL(s)| =Il< Magnitude condition

LL(s)=180" Phase condition

K<0:L(s)=—i© L(s)=—]1< Magnitude condition

LL(s)=0" Phase condition

ME 343 — Control Systems
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Root Locus by Characteristic Equation Solution

Example: R(5) - @ E(5) X U(s) ( 101)( 5 Y(s)
S+ S+

Y(s) _ K
R(s) s*+11s+(10+K)

Closed-loop poles: 1+ L(s)=0< s> +11s+(10+K)=0

s=-1-10 K=0
\B1-4K s=-5.sim;W §1-4K >0

2 5=-55 81-4K =0
L’zgl 81-4K <0

s=-55=%i

ME 343 — Control Systems 89

Root Locus by Characteristic Equation Solution

g T T T T T T
18

4+

Imag Axis

-10 -8 6 -4 2 0 2 4
Real Axis

We need a systematic approach to plot the closed-loop poles
as function of the gain K - ROOT LOCUS

ME 343 — Control Systems 90
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Phase and Magnitude of a Transfer Function
b,s" +b, s"" +--+bs+b,

n n-1

s"+a, s+ +as+a,

G(s) =

G(s)= K (s=z)(s-2))(s-2,)
(s=p)(s=p,)---(s=p,)

The factors K, (s-z) and (s-p,) are complex numbers:
¢/

S-2; —r e =1...m
J
(s—py)= ”kp€i¢k , k=1-p
K =|Kle"”
o rzezq)l I"Z s . rzengm
G(s) =|Kle" ——-2
7 Pl v Peltt .. 7! P97

ME 343 — Control Systems
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Phase and Magnitude of a Transfer Function

rlzez(pl rzz iy X rzet(])m

p iof 1¢2 .
e rle

G(s)= \K\e’”’
e

o I’izrzz .. anel(b] +¢3 +‘~-+¢;)
Q}{’+¢p+ +¢r )

P
Kl --rle

\K\VIFZ 0 40 o vt v

P
7"1 I"2 rn

Now it is easy to give the phase and magnitude
of the transfer function'

Gls)|=|K| L2
.}/‘n

nry

LG(s) =5 + (7 407+ v g2 )7 + 97 4407

ME 343 — Control Systems
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Root Locus by Phase Condition

Example: R(s) @ E(s) Ul(s) s+1 Y(s)
P K s(s+5)s> +4s+8)
5 Pole-Zero Map
s I I L(S) _ s+1
3l s(s+5)(g2+4s+8)
i s+1

=s(s+5Xs+2+2iXs+2—2i)

Imag Axis

s, =-1+3i

belongs to the locus?

L St

7 6 5 -4 -3 -2 -1 0 1 2
Real Axis
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Root Locus by Phase Condition

5 T

-5 L 1 L L L L H L
-7 6 5 -4 -3 2 -1 0 1 2

90" - [108.43° +36.87" +45° +78.70° k180" =5 =-1+3i belongs to the locus!

Note: Check code rlocus_phasecondition.m

ME 343 — Control Systems 94

47



Root Locus by Phase Condition

nl s I~ 5, =—1+3i

Imag Axis

-7 -6 5 -4 -3 -2 -1 0 1 2
Real Axis

We need a systematic approach to plot the closed-loop poles
as function of the gain K — ROOT LOCUS
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Root Locus
RL = zeros{l + KL(s) }=roots{den(L) + Knum(L) }

when K varies from 0 to « (positive Root Locus) or
from 0 to -« (negative Root Locus)

1+ KL(s)=0< L(s) = —[1< < a(s)+Kb(s)=0
Basic Properties:

e Number of branches = number of open-loop poles
e RL begins at open-loop poles

K=0=a(s)=0

e RL ends at open-loop zeros or asymptotes
b(s)=0

K=w3L(S)=O©{S—>°°(n—m>O)

e RL symmetrical about Re-axis

ME 343 — Control Systems 96
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Root Locus

Rule 1: The n branches of the locus start at the poles of L(s)
and m of these branches end on the zeros of L(s).

n: order of the denominator of L(s)

m: order of the numerator of L(s)

Rule 2: The locus is on the real axis to the left of and odd
number of poles and zeros.

In other words, an interval on the real axis belongs to the
root locus if the total number of poles and zeros to the right
is odd.

This rule comes from the phase condition!!!
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Root Locus

Rule 3: As K—x, m of the closed-loop poles approach the
open-loop zeros, and n-m of them approach »n-m asymptotes
with angles

T 1=0L...n-m-1

¢ =(1+1)

n—m

and centered at

b, —a, E:poles - E:zeros
o= =

n—m n—m

[=0,],..,n-m-1

b
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Rule 4: The locus crosses the jw axis (looses stability) where

Root Locus

the Routh criterion shows a transition from roots in the left
half-plane to roots in the right-half plane.

15 T T T T T T

Example: 0 § /
; z
S+ 5 ¢>(-< w%
G(s)=—5 " 5 Opo e
~/
s(s”+4s+5) = i
K =20,5s=%j5 §\\
10} : \
-15 . . . . : i .
6 5 -4 -3 -2 -1 0 1
Real Axis
ME 343 — Control Systems 99
Root Locus
s+1
Example: G(s)=—; 3 3
s +3s7+7s  +65+4
4 :
a3t
2t i
Tr T T
K.} T H
£, T S -
E ' :
Ak -
ol B %\‘\‘\j\
S
a3t \‘\ ]
4 L , , \ L i ,
3 25 2 15 -1 05 0 0.5 1
Real Axis
ME 343 — Control Systems 100
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Root Locus

Design dangers revealed by the Root Locus:

e High relative degree: For n-m=3 we have closed loop
instability due to asymptotes.

G(s) = s+1

st 4387 + 75 +65+4

e Nonminimum phase zeros: They attract closed loop poles
into the RHP

s—1
G(s)=—"""
) s+s+1

Note: Check code lecturel6_a.m

ME 343 — Control Systems
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Root Locus

Viete’s formula:

When the relative degree n-m=2, the sum of the closed loop
poles is constant

a = —2 closed loop poles

_b(s) s #bs" 44 b, s+D,

-1
a(s) s"+as" +--+a, s+a,

L(s)

ME 343 — Control Systems
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Phase and Magnitude of a Transfer Function
b,s" +b, s"" +--+bs+b,

n n-1

s"+a, s+ +as+a,

G(s) =

G(s)= K (s=z)(s-2))(s-2,)
(s=p)(s=p,)---(s=p,)

The factors K, (s-z) and (s-p,) are complex numbers:
¢/

S-2; —r e =1...m
J
(s—py)= ”kp€i¢k , k=1-p
K =|Kle"”
o rzezq)l I"Z s . rzengm
G(s) =|Kle" ——-2
7 Pl v Peltt .. 7! P97

ME 343 — Control Systems
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Phase and Magnitude of a Transfer Function

rlzez(pl rzz iy X rzet(])m

p iof 1¢2 .
e rle

G(s)= \K\e’”’
e

o I’izrzz .. anel(b] +¢3 +‘~-+¢;)
Q}{’+¢p+ +¢r )

P
Kl --rle

\K’\”2 0 40 o vt v

P
7"1 I"2 rn

Now it is easy to give the phase and magnitude
of the transfer function:

G(s) = ‘K‘u

m
e
r}’l

LG(s) =5 + (7 407+ v g2 )7 + 97 4407

ME 343 — Control Systems

nry

104

52



Phase and Magnitude of a Transfer Function
(s +6.735)
(s +1)s +5)s +20)

Example: G(s)=

Pole-Zero Map

Z

G
‘ (S)‘ przprf

14G(s)=¢ _(¢1p+¢2p+¢3p:

Imag Axis

-25 -20 -15 -10 -5 0 5
Real Axis
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Root Locus- Magnitude and Phase Conditions

RL = zeros{l + KL(s) } = roots{den(L) + Knum(L)}

when K varies from 0 to = (positive Root Locus) or
from 0 to -» (negative Root Locus)

L(s)=K (S—Zl)(S—Zz)”-(S—Zm) =‘K ‘rl ”2 E QI>1+¢2+ +Pp, )Qv +pf + +¢”)
"(s=p)s=py)(s-p,) wWry Vnp
Lis) =K M-i
K>0:L(s)=—11< L= ‘ ‘ e’ K

LL(s)=¢"" +(¢1 +¢2z+---+¢,f1)—(¢,p +¢2”+---+¢,f)=180°

ey eer 1
L(s)| =|K [ L2 o
K< OL()-—;(@ - ‘ o K

AL(s)=¢ v +(¢1Z+¢§+~-+¢;)—(¢,p+¢2”+-~+¢n”)=0°
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Root Locus

Selecting K for desired closed loop poles on Root Locus:

If s, belongs to the root locus, it must satisfies the
characteristic equation for some value of K

L(so)=—11<

Then we can obtain K as

L(s,)

" LGs,)

ME 343 — Control Systems 107

Root Locus

Example: L(S)=G(S)=(S+li5‘+5)

s, +1s, +5/=|-3+i4+1-3+i4+5|

= J2F +42 @) +4% =20

s,=-3+i4=K =

L(s,)

Using MATLAB:

sys=tf(1,poly([-1 -5]))
so=-3+4i
[K,POLES]=rlocfind(sys,so0)

ME 343 — Control Systems 108
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Root L(l)cus
Example: L(S)=G(S)=Ws+5) s, ==3+i4

6

s, =-7+i5 ' / '
| 4 /
= ! =42.06 2}
IL(s,)
Tof e e
s, =7 +i5 £
2+
s
£ L 1 L L L 1 L 1
-8 -7 6 -5 -4 3 -2 -1 0 1 2

Real Axis

When we use the absolute value formula we are assuming
that the point belongs to the Root Locus!
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Root Locus - Compensators
1

(s+1)s+5)

Can we place the closed loop pole at s =-7+i5 only varying K?
NO. We need a COMPENSATOR.

Example: L(s)=G(s) =

1 1
L(s)=G(s) = Go1)53) L(s) = D(s)G(s) = (s + IO)WHS)

Imag A
S & [ N o - IS w IS

Imag A

PR T - T
T
e

B 5 -4 3 2 -1 0 1 2 h 20 -15 -10 5 0

The zero attracts the locus!!!
ME 343 — Control Systems 110
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Root Locus — Phase lead compensator

Pure derivative control is not normally practical because of the
amplification of the noise due to the differentiation and must
be approximated:

_ Stz Phase lead
D&)y=Cr,r P77 COMPENSATOR

When we study frequency response we will understand why
we call “Phase Lead” to this compensator.

S+z 1
L(s)=D(s5)G(s) = , >z
() ($)G(s) s+p(s+1Xs+5) P
How do we choose z and p to place the closed loop pole
at s =-7+i57?

ME 343 — Control Systems

Root Locus — Phase lead compensator

Example: L(s) = D(s)G(s) = ﬂﬁ), oz
Pole-Zero Map S+p\s +1)s+5
E ! T T

Phase lead
COMPENSATOR

Imag Axis

Let us choose p=20

-25 -20 -15 -10
Real Axis

5 0
K z z z o
LL(s)=¢ " +(q>l +@ ot m)—(qb,” +¢2”+---+¢n”)=180
¢ =180° +140.19° +111.80° + 21.04° = 453.03° =93.03"= z = —6.735
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Root Locus — Phase lead compensator

Example:

20

L(s)=D(s)G(s) =

s+6.735

1

Imag Axis

20

ME 343 — Control Systems

Real Axis

s+20 (S+1XS+5)

\ Phase lead

| | COMPENSATOR
- s, =-7+i5
] K =117
S G WS . .
20 5 0 5 0 5

113

Root Locus — Phase lead compensator

Selecting z and p is a trial an error procedure. In general:

e The zero is placed in the neighborhood of the closed-
loop natural frequency, as determined by rise-time or

settling time requirements.

e The poles is placed at a distance 5 to 20 times the
value of the zero location. The pole is fast enough to

avoid modifying the dominant pole behavior.

The exact position of the pole p is a compromise between:

e Noise suppression (we want a small value for p)
e Compensation effectiveness (we want large value for p)

ME 343 — Control Systems
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Root Locus — Phase lag compensator
s +6.735 1

Example: L(s) = D(s)G(s) = s+20 (s+1)s+5)

K, =limL(s) = lim D()G(s) = lim 0735 1 = 6.735x107

~0 5+20 (s+1)s+5)

What can we do to increase K,? Suppose we want K =10.

s+2z85+6.735 1

L(s)=D(s)G(s) = , <z
(s) ($)G(s) s+p s+20 (s+1)s+5) P
Phase lag
COMPENSATOR
We choose: 2 = x10° =148.48
p 6.735
ME 343 — Control Systems 115

Root Locus — Phase lag compensator
5+0.148485+6.735 1
s+0.001 5+20 (s+1)s+5)

Example:  L(s)=D(s)G(s) =

20—

\ g s, =—6.94+15.03
st 1 | K=183l

Imag Axis

opla , , , ; ,
-20 -15 -10 5 0 5
Real Axis
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Root Locus — Phase lag compensator

Selecting z and p is a trial an error procedure. In general:

e The ratio zero/pole is chosen based on the error

constant specification.

e We pick z and p small to avoid affecting the dominant
dynamic of the system (to avoid modifying the part of
the locus representing the dominant dynamics)

e Slow transient due to the small p is almost cancelled
by an small z. The ratio zero/pole cannot be very big.

The exact position of z and p is a compromise between:

e Steady state error (we want a large value for z/p)
e The transient response (we want the pole p placed far
from the origin)

ME 343 — Control Systems
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Root Locus - Compensators

S+z
Phase lead compensator: D(s) = , Z<p
S+ p
S+z
Phase lag compensator: D(s)= , Z>p
S+ p

We will see why we call “phase lead” and “phase lag” to
these compensators when we study frequency response

ME 343 — Control Systems
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Frequency Response

*  We now know how to analyze and design systems via s-domain
methods which yield dynamical information

» The responses are described by the exponential modes

» We next will look at describing system performance via frequency
response methods

 This guides us in specifying the system pole and zero positions

ME 343 — Control Systems 119

Sinusoidal Steady-State Response

Consider a stable transfer function with a
sinusoidal input:

u(t) = Acos(wt) = U(s) = Aw

S+’

The Laplace Transform of the response has poles
e Where the natural system modes lie

-These are in the open left half plane Re(s)<0

e At the input modes s=+jw and s=-jo

(s-z)(s-2))(s-2,) Aw
Y(s)=G(s)U(s)=K
= G = K s = Py 5 - ) 6 + )

Only the response due to the poles on the imaginary
axis remains after a sufficiently long time

This is the sinusoidal steady-state response
ME 343 — Control Systems 120
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Sinusoidal Steady-State Response

o Input u(t)= Acos(wt+¢)= Acoswtsing — Asin wt cos¢

s . W
¢ Transform  U(s)=-A4cos¢—5—— + Asing—5——
"+ w S“+w
* Response Transform
k K k k k
Y(s)=G(s)U(s) = — + —+— 2 4N

S—jow s+jo s-p  S-p, S—py

» Response Signal forced\rgsponse natural response

. .
(1) =ke! + k e/ 4 kP! +kzep2t+~~+kNepNt
[ —

forced response natural response
 Sinusoidal Steady State Response koo
. .
yss(t) =ke! ™ + keI 0

ME 343 — Control Systems
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Sinusoidal Steady-State Response

 Calculating the SSS response to u(t) = Acos(®t +¢)
* Residue calculation
k = lim|(s - jo)Y (s) ]= lim|(s - j)G(s)U(s)]
SCOSP — wsing

- Sli%[G(S)(S - jw)4 (s - jo)(s + jo)

] = G(jw)A[ 2w

= AG(jw)%ej"’ - %A‘G(jw)‘e,/(WLG(jw))

* Signal calculation

YVss (t) = L_l { k + k* }

s—jo s+ jw

- ‘k‘ejél(ejwl + ‘k‘e—jLKe—jwl
= 2/k] cos(wr + LK)
Vs (0) = AG(jw)|cos(wr + ¢+ LG(jw))

ME 343 — Control Systems

jowcosy — wsing

|
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Sinusoidal Steady-State Response

« Response to  u(f) = Acos(wt +¢)
is Vs =|G(jw) Acos(wt + ¢ + LG(jw))

— Output frequency = input frequency
— Output amplitude = input amplitude x |G(jw)|
— Output phase = input phase + £ G(jw)

* The Frequency Response of the transfer function G(s) is given
by its evaluation as a function of a complex variable at s=jw
* We speak of the amplitude response and of the phase response

» Bode’s relations of analytic function theory

ME 343 — Control Systems 123

Frequency Response

* Find the steady state output for v,(t)=Acos(wt+¢)
000

Vil Vi)

» Compute the s-domain transfer function T(s)

— Voltage divider T(s)= R

he £ sL+R

Compute the requencx response . oL
LT(jw)=—-tan (R)

‘T(Jw)‘ = ma

» Compute the steady state output )
cosfr + ¢ — tan_l(wL/R)_

AR
vags(t) =
258 lez + (wL)2

ME 343 — Control Systems 124
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Bode Diagrams

* Log-log plot of mag(T), log-linear plot of arg(T) versus ®

Bode Diagram
0

&
T

Magnitude (dB)

Phase (deg)

90 L
10* 107 10°
Frequency (rad/sec)
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Bode Diagrams

Gis) - K 5= 2s=2) (5= 2,)
(s=P)s=p)+(s-p,)

I

G(s) = \K\ nr Eb O +95++95 L0 v ++97 )

P
I" 7’2 o,

The magnitude and phase of G(s) when s=jw is given by:

Nonlinear in the magnitudes

/
G(jw)| = \K\ir‘ L
2 .rn

. z z \
LG 8"+ 105 o b2 ) G 400 )
T Linear in the phases
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Bode Diagrams
Why do we express \G(ja))\ in decibels?

G(jw)| , =20log|G(jw)|

zZ_Z z
rl r2 '”rm

PP ..., P
Wr
By properties of the logarithm we can write:

G(jw)|=|K] =|G(jw)|,;=?
2010g‘G(s)‘ = 20log‘K‘ + (2010grlz +20logr; +---+ 2010gr,j)— (2010gr1" +20logr +---+ 2010grf}
The magnitude and phase of G(s) when s=jw is given by:

Linear in the magnitudes (dB)

G, = Kl + b, WL ], e],)
LG(s) =95 + (7 + i+t )-Qr +40 44 97)
T Linear in the phases

ME 343 — Control Systems 127

z
+7,

z
+ 7
dB m

Bode Diagrams
Why do we use a logarithmic scale? Let’s have a look at our example:
R 1

\/R +(wL) \/H(wL)

— = SIT(iw) =
ja)L+R:>| (]w)|

T(S)=.S‘L%:>T(jw)=

Expressing the magnitude in dB:

wL\’ WL\’
T(jw),, =20logl-20log l+(R) =—1Olog[1+(R)}

Asymptotic behavior:

w—0:T(jw),—0

-20logw

. w R
w—>w:|T(jo), — _2010g(R/L) =20log(R/L)-20logw = .,

LINEAR FUNCTION in logw!!! We plot \G(ja))\dg as a function of logw.
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Bode Diagrams

Why do we use a logarithmic scale? Let’s have a look at our example:

T()=— = T(jw) = 1

sL+ jowL + R jw%ﬂ

Expressing the phase:

LT(jw)= Llog1—4(1+j%) _ —tan‘l(w?%)

Asymptotic behavior:
=0 LG(jo),.
-90°

LG(jw)
LG(jw)

= -45°

~|

w—>00

LINEAR FUNCTION in logn!!! We plot £ZG(jw) as a function of logo.

ME 343 — Control Systems 129

General Transfer Function: Real poles/zeros

G(jw)=(jor +1)

Magnitude and Phase:
G(jw),, = n-lOlog(a)Zz'2 + 1;
£G(jw)=ntan™ (wt)

Asymptotic behavior:

‘G(Jw)‘dB w<<l/T 0 LG(]C()) w<<l/t 0"
‘G(jw)‘dBTmn-r‘dB+n-2010ga) LG(jCU)W}’l'W)O
ME 343 — Control Systems 130
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Bode Diagrams

* Log-log plot of mag(T), log-linear plot of arg(T) versus ®

Bode Diagram
0

20dB/dec |

Magnitude (dB)

Phase (deg)

L
10 10° 10°
Frequency (rad/sec)
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Bode Diagrams

Decade: Any frequency range whose end points have a 10:1 ratio

A cutoff frequency occurs when the gain is reduced from its
maximum passband value by a factor 1/4/2 :

2010g( éTMM) =20logT|, ,, - 20log~/2 =20logT| - 3dB

Bandwith: frequency range spanned by the gain passband
Let's have a look at our example:
. 1 w=0 T(jw) =1
TG e
. a)L) w=R/L |T(jw)=1/~2
+ [EE—

This is a low-pass filter!!! Passband gain=1, Cutoff frequency=R/L
The Bandwith is R/L!

ME 343 — Control Systems 132
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Frequency Response

u(r) = Acos(wt +¢) — G(s) — »,, =|G(jw)|Adcos(wt +¢ + LG(jw))

\ Stable Transfer Function

e After a transient, the output settles to a sinusoid with an
amplitude magnified by |G(jw)| and phase shifted by ZG(jw).

e Since all signals can be represented by sinusoids (Fourier
series and transform), the quantities \G(ja))\ and £G(jw) are
extremely important.

« Bode developed methods for quickly finding |G(jw)| and £ZG(jw)
for a given G(s) and for using them in control design.

ME 343 — Control Systems 133

Bode Diagrams

Gis) - K 5= 2s=2) (5= 2,)
(s=P)s=p)+(s-p,)

I

G(s) = \K\ nr Eb O +95++95 L0 v ++97 )

P
I" 7’2 o,

The magnitude and phase of G(s) when s=jw is given by:

Nonlinear in the magnitudes

/
G(jw)| = \K\ir‘ L
2 .rn

. z z \
LG 8"+ 105 o b2 ) G 400 )
T Linear in the phases
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Bode Diagrams
Why do we express \G(ja))\ in decibels?

G(jw)| , =20log|G(jw)|

zZ_Z z
rl r2 '”rm

Gjw) - IK =[G, =?

PP, P
Wy

By properties of the logarithm we can write:
2010g‘G(s)‘ = ZOlog‘K‘ + (2010grlz +20logr; +---+ 2010gr,j)— (2010gr1" +20logr +---+ 2010grf}
The magnitude and phase of G(s) when s=jw is given by:

Linear in the magnitudes (dB)
‘G(S)‘dB = ‘K‘dB * le dB dB dB } le‘dB * rzp‘dg toer) dB)
LG(s) =" + @ +65 ++ 07 )- Q0 +97 +---+47)
T Linear in the phases

z
+7,

z
+o

ME 343 — Control Systems
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General Transfer Function (Bode Diagrams)

G(jw)=K,(jo) (jor +1) (i;")z +2¢ 2}“’ 1 q

n

The magnitude (dB) (phase) is the sum of the magnitudes (dB)
(phases) of each one of the terms. We learn how to plot each term,
we learn how to plot the whole magnitude and phase Bode Plot.

Classes of terms:
1- G(ja))= K,
> G(jw)=(jo)
3 G(jw)=(jor +1)

. 2 . q
+ G(jw)= (]a)) +2¢ J9 11
) )

n n
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General Transfer Function: DC gain

G(jo)=K,
Magnitude and Phase: ‘G(/w)dB = 2()10g‘[{0
_ 0 ifK,>0
LG(]w)= i
+
G(S)=—10 = v/ A K0<0
40, . 200 .
35 180|
160|
30,
_ 140
825 319
ézc @100
215 & 2
[
10
40
5 20
fo’l 3 10' 10° fo’l 10’ 10 10°
Frequency (rad/sec) Frequency (rad/sec)
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General Transfer Function: Poles/zeros at origin
Gljw)=(jo)'

Magnitude and Phase: ‘G(ja))dB =m-20logw

, T
m=—1,G(s)=1 AG(]w)=m5
s

20, T T 0
10 ‘ ( 1 - 20
G(1),=0
2 9 40
E >
w 2
B-10 o -60
= 7]
=1 <
2 H
=20 dB / -80
m-20—
30 dec -100
-40 : : -120
10" 10’ 10" 10° 10" 10° 10" 100
Frequency (rad/sec) Frequency (rad/sec)
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General Transfer Function: Real poles/zeros

G(jw)=(jor +1)

Magnitude and Phase:

G(jw),, = n-10loglw’c® +1,
£G(jw)=ntan™ (w7)

Asymptotic behavior:

G(j)|yy 0 LGUo)— 0
Gj®)| i1 T+ 1 20l0gw LG(jo)——>n-90°

ME 343 — Control Systems
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General Transfer Function: Real poles/zeros

n=-1,t=1/10
5,
0 dB 1 ) 1
_ 5} n-20°" | G(s)- s
g . n-3dB e dec | E-l-l
-]
ERL .
.E
220} ]
s
25f 1 ‘G(jO)‘dB =0dB
=0 | [G(j1/7)|,, =n-3dB
=35} 4
oL _ : _ 3 G()| ,, = sgn(n)»dB
10° 10 10 10

10
Frequency (rad/sec)
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General Transfer Function: Real poles/zeros

n=-1,7=1/10
1
Gls)=
S
—+1
g 10
£G(j0) =0
LG(jlIT)=n-45°
5o i 7 - S LGy =n90

Frequency (rad/sec)
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General Transfer Function: Complex poles/zeros
. 2 . q
G(jw)= (]a)) + 2§£+1
w, )

n

Magnitude and Phase: 5 5

\G(ja))dB =¢q-10log (l—wz) + (2@ a))
) )

n n

AG(/w)=q'tan‘1(2Cw/w" )

-0/ w!
Asymptotic behavior:

G(j®)| )y =0 coU =m0
‘G(jw)‘d3w>—>wn>_ZQ'wn‘dB +q-40logw £G(jw)

q-180°

w>>w,
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General Transfer Function: Complex poles/zeros

N ' q=_19wn =1,C =0.05
0 q ‘ZC‘dB
1
Bl Gls)=————
g g-4022 ) s +0.1s+1
4 e dec
_40,
E
5 -e0}
b
| G(j0)|,, = 0dB
-100( | [G(jw,)| , =q-GaB+E| )
. . G(j*)|,; = sgn(q)=dB
- 125_)0_:l 10’ 10* 10 10
Freouency (rad/sec)

GG =I6(ja)),, =g-0E1-€7), = 0=, =2

ME 343 — Control Systems
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General Transfer Function: Complex poles/zeros

g=-lw, =1, =0.05

20
° 1
el G(S)= 2
0} s +0.1s+1
o o0
3 a0
£ -100f S £G(j0) =0
= _120] q-90 LG(j1/T) = q-90°
o L LG(jo)=q-180°
=160t
-180
—200 =) ) 1 2
10 10 10 10 10
Frequency (rad/sec)
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Frequency Response

u(r) = Acos(wt +¢) — G(s) — »,, =|G(jw)|Adcos(wt +¢ + LG(jw))

\ Stable Transfer Function

e After a transient, the output settles to a sinusoid with an
amplitude magnified by |G(jw)| and phase shifted by ZG(jw).

e Since all signals can be represented by sinusoids (Fourier
series and transform), the quantities \G(ja))\ and £G(jw) are
extremely important.

« Bode developed methods for quickly finding |G(jw)| and £ZG(jw)
for a given G(s) and for using them in control design.

ME 343 — Control Systems 145

Bode Diagrams

Gis) - K 5= 2s=2) (5= 2,)
(s=P)s=p)+(s-p,)

I

G(s) = \K\ nr Eb O +95++95 L0 v ++97 )

P
I" 7’2 o,

The magnitude and phase of G(s) when s=jw is given by:

Nonlinear in the magnitudes

/
G(jw)| = \K\ir‘ L
2 .rn

. z z \
LG 8"+ 105 o b2 ) G 400 )
T Linear in the phases
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Bode Diagrams
Why do we express \G(ja))\ in decibels?

G(jw)| , =20log|G(jw)|

zZ_Z z
rl r2 '”rm

Gjw) - IK =[G, =?

PP, P
Wy

By properties of the logarithm we can write:
2010g‘G(s)‘ = ZOlog‘K‘ + (2010grlz +20logr; +---+ 2010gr,j)— (2010gr1" +20logr +---+ 2010grf}
The magnitude and phase of G(s) when s=jw is given by:

Linear in the magnitudes (dB)
‘G(S)‘dB = ‘K‘dB * le dB dB dB } le‘dB * rzp‘dg toer) dB)
LG(s) =" + @ +65 ++ 07 )- Q0 +97 +---+47)
T Linear in the phases

z
+7,

z
+o
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General Transfer Function (Bode Diagrams)

G(jw)=K,(jo) (jor +1) (i;")z +2¢ 2}“’ 1 q

n

The magnitude (dB) (phase) is the sum of the magnitudes (dB)
(phases) of each one of the terms. We learn how to plot each term,
we learn how to plot the whole magnitude and phase Bode Plot.

Classes of terms:
1- G(ja))= K,
> G(jw)=(jo)
3 G(jw)=(jor +1)

. 2 . q
+ G(jw)= (]a)) +2¢ J9 11
) )

n n
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Bode Diagrams

G(s)= 2000(s +0.5)
s(s+10)(s +50)

Example:

ME 343 — Control Systems
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Frequency Response: Poles/Zeros in the RHP

» Same [G(jw)| .
e The effect on £LG(jw) is opposite than the stable case.

An unstable pole behaves like a stable zero
An “unstable” zero behaves like a “stable” pole

1

Example: G(s)= >
S f—

This frequency response cannot be found experimentally
but can be computed and used for control design.

ME 343 — Control Systems
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Bode Diagrams

Decade: Any frequency range whose end points have a 10:1 ratio

A cutoff frequency occurs when the gain is reduced from its
maximum passband value by a factor 1/4/2 :

201og(\15TMAX) = 2010g\T\MAX—2010g«5 ~20logT|,  —3dB

Bandwith: frequency range spanned by the gain passband

Let’s have a look at our example:

o) - -{ TGl

wl w=R/L [T(jo)=1/\2

R

This is a low-pass filter!!! Passband gain=1, Cutoff frequency=R/L
The Bandwith is R/L!

ME 343 — Control Systems 151
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Frequency Response

u(f) = Acos(wt +¢) —1 G(s) — y,, =|G(jw)|Acos(wt +¢ + LG(jw))

\ Stable Transfer Function

G(jw) =|G(jw)le’ 7V BODE plots

G(jw) = Re{G(jw) }+ jIm{G(jw)} NYQUIST plots

ME 343 — Control Systems 152
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Nyquist Diagrams
G(jw) =Re{G(jw) }+ jIm{G(jw) }=|G(jo)le’“
How are the Bode and Nyquist plots related?

They are two way to represent the same information
JIm{G(jw)}

G(jo)

m £LG(jo)

U Re{G(jw)}

ME 343 — Control Systems
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Nyquist Diagrams

Find the steady state output for v,(t)=Acos(wt+¢)

+
sL

V(s) R V(s)

Compute the s-domain transfer function T(s)
Voltage divider T(s) =

sL+R
Compute the frequency response
TG0 =t LT(j) —tan‘l(”’L)
R+ (a)L)2 R

Compute the steady state output

AR 1 '
Vo g5(f) = —————cosfwr + ¢ — tan (wL/R)
258 RZ + (wL)2 L) )

ME 343 — Control Systems
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Bode Diagrams

* Log-log plot of mag(T), log-linear plot of arg(T) versus m

Bode Diagram
0

= f 10
g B G(s) =

3l 20dB/dec | G(s) 110
£ R/IL=10

§ 20|

Phase (deg)

-90
10* 107 10°
Frequency (rad/sec)

T |ol|=rad/sec, w=2af, |f |- H:
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Nyquist Diagrams

R R R-joL R -joRL
R+jolL R+ joLR-jol R +w’L’

T(jw)=

. _i{ WL
LT(jw)=-tan (?)

‘T( 'a))‘ = L
/ JR? +(wL)? '

R? ©RL
Re7T(jw)f=————, Im{T(jow)if=-——
{ ( )} R+l { G )} R+l
1- w—>0:‘T(jw)‘—>1, LT(jw)—0 T(jw)=1

2- 0T >0, LT(0) =90 T(jo) =) s
wL

3- Re{l(jw)}=0< v =

4- T (jo)}=0= w=0,0=x

ME 343 — Control Systems 156




Nyquist Diagrams
Im{G(jw)} vs. Re{G(jo)}

Nyguist Plot

021 ' . G(S) =

01F

S ——— 1
o2l \ ,/]

03F \\_/ //

D6

R/L =

Imaginary Axis

07F

05 0 05 1 15
Real Axis

ME 343 — Control Systems
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Nyquist Diagrams
General procedure for sketching Nyquist Diagrams:
e Find G(j0)
e Find G(j=)

e Find w* such that Re{G(w*)}=0; Im{GGw*} is the
intersection with the imaginary axis.

e Find w* such that Im{GGw*)}=0; Re{G(w*} is the
intersection with the real axis.

e Connect the points

ME 343 — Control Systems
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Nyquist Diagrams
1

s(s+1)2

Example: G(s) =

1 (—]wXI ]a))2 —2w+](a) —1)

G(jw) =

ja)(/cu+1)2 ]a)(]a)+1)2 (—]CUXl ]a))2

1- 0—0:G(jw)=-2- jo

o1
g A S——

@

2- w—=x:G(jw) 0

3- Re{G(jo)}=0e w=2x

4- Im{G(jo)}=0sw=lLw=» Re{G()}= _%

w(a) +1)
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Nyquist Diagrams
1
Example: G(S) =
s(s + 1)z
Nyguist Plot
1 T
U ittt ettt et ittt -1
Al /
/
2+ f'/
3 /
£
E 5l
a8 ‘
gl
gl
-10 : : : : :
5 -4 3 2 - 0 1
Real Axis
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Nyquist Diagrams from Bode Diagrams

Bode Diagrams

G(s) =

From: U(1)

400 , ] , , s(s + 1)2

o

dec

-100

00 " g0° \
= -150 F .
= -180°
2s0] \ ~270° = 90"

L . . .
107 107 107 10° 10' 10° 10°

Phase {deg); Magnitude (dB)

Frequency (rad/sec)

ME 343 — Control Systems
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Nyquist Stability Criterion

U(s) - G(S) Y(s)

When is this transfer function Stable?

NYQUIST: The closed loop is asymptotically stable if the
number of counterclockwise encirclements of the point
(-1+j0) that the Nyquist curve of G(jw) is equal to the
number of poles of G(s) with positive real parts (unstable
poles)

Corollary: If the open-loop system G(s) is stable, then the
closed-loop system is also stable provided G(s) makes no
encirclement of the point (-1+j0).
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Nyquist Stability Criterion

1 1
G(s) = G(s)=
4 3 2 4 3 2
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Nyquist Stability Criterion

U(s) G(S) Y(s)

K

When is this transfer function Stable?

NYQUIST: The closed loop is asymptotically stable if the
number of counterclockwise encirclements of the point
(-1/K+j0) that the Nyquist curve of G(jw) is equal to the
number of poles of G(s) with positive real parts (unstable
poles)
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Neutral Stability

U(s) KG(S Y(s)

1
Gls) - s(s + 1)2

Root Locus

05

Root locus condition:

\ KG(s)|=1, £G(s)=-180'

Imag Axis
o

05k

___________ > At points of neutral stability
RL condition hold for s=jw
| | KG(jw)=1, £G(jw)=-180

Stability: At £G(jw)=-180°

"2 15 - -05
Real Axis
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1
KG(jw) <1 If 1K leads to instability
KG(jw)>1 If |K leads to instability
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Stability Margins

The GAIN MARGIN (GM) is the factor by which the gain
can be raised before instability results.

GM|<1(GM| , <0)= UNSTABLE SYSTEM

GM is equal to 1/KG(jw)| (- \KG(jw)\dBJ at the frequency
where 2G(jw)=-180".

The PHASE MARGIN (PM) is the value by which the phase
can be raised before instability results.

PM < (0= UNSTABLE SYSTEM

PM is the amount by which the phase of G(jw) exceeds
-180° when [KG(jw) =1 (KG(jo), =0,

ME 343 — Control Systems
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Stability Margins

1/GM

Nyguist Plot

Imaginary Axis
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-1 05 0
Real Axis
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Stabilitv Margins

Bode Diagrams

From: U(1) G(S) =

T

Phase (deg); Magnitude (dB)

Il L
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107"

10° 10" 10°

Frequency (rad/sec)

L
s(s+1)2
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Specifications in the Frequency Domain

1. The crossover frequency w,, which determines
bandwith wy, rise time ¢, and settling time ¢..

2. The phase margin PM, which determines the
damping coefficient £ and the overshoot Mp.

3. The low-frequency gain, which determines the
steady-state error characteristics.
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Specifications in the Frequency Domain
The phase and the magnitude are NOT independent!

Bode’s Gain-Phase relationship:

, 1 s=dM
LG(]CUO)= ;JZOOEW(MMU
M =n|G(jw)
u=In(w/w,)
W () = In(cothlu|/2)
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Specifications in the Frequency Domain

The crossover frequency:

W, < Wgy <20,

0.1 N\
O Bandwidth

20, Sw. 10w,
 (rad/sec)

< /‘Kc(jw)‘ PM = 22°
§ 20 N /\/ |
[ N PM = 45
2 10 - 3 .
g N\
§ 0.7 o S / i \\ e =
= PM = 90°
; @ \ o
2 02 \ e ; =
= \ |T(jw)| = [KG(jo)
=
< ]
=
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Specifications in the Frequency Domain
The Phase Margin: PM vs. Mp
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Specifications in the Frequency Domain

The Phase Margin: PM vs. § c

4\

_PM
100
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Damping ratio, ¢
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Frequency Response — Phase Lead Compensators

10
5
2
D)1
0.5
0.2
I |
0.1
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90° I |
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/D(s) “ 4}-\
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' 1
0.1 | wpad 10 100
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o D(s) = Ts+1 , a<l
als +1
0 5 a=1—sin¢MAX
1+sing,,

logw —l lo l +1o !
ZWyr4x 2 g(T) g(aT)

-20

It is a high-pass filter and approximates
PD control. It is used whenever substantial
improvement in damping is needed. It
tends to increase the speed of response of
a system for a fixed low-frequency gain.
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Frequency Response — Phase Lead Compensators

1. Determine the open-loop gain X to satisfy error or bandwidth
requirements:

- To meet error requirement, pick K to satisfy error
constants (K, K,, K,) so that ¢, specification is met.

- To meet bandwidth requirement, pick K so that the
open-loop crossover frequency is a factor of two below the
desired closed-loop bandwidth.

2. Determine the needed phase lead — o based on the PM
specification.  _!-s=n¢, .,
lesing,, .
3. Pick w,,, to be at the crossover frequency.
4. Determine the zero and pole of the compensator.
z=1/T= Wy @' p=l/aT= wy, a'?
5. Draw the compensated frequency response and check PM.
6. Iterate on the design. Add additional compensator if needed.
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Frequency Response — Phase Lag Compensators

‘ D(s) = Ts+1

o>1

ols +1°

0° v ‘
It is a low-pass filter and approximates PI
—30° \/ ‘ control. It is used to increase the low

£D(s) —60°

| frequency gain of the system and improve
‘ steady state response for fixed bandwidth.

~90° For a fixed low-frequency gain, it will

—120°

decrease the speed of response of the system.

0.1 1 10
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Frequency Response — Phase Lag Compensators

1. Determine the open-loop gain K that will meet the PM
requirement without compensation.

2. Draw the Bode plot of the uncompensated system with
crossover frequency from step 1 and evaluate the low-

frequency gain.

3. Determine a to meet the low frequency gain error

requirement.

4. Choose the corner frequency w=1/T (the zero of the
compensator) to be one decade below the new crossover

frequency w,.

5. The other corner frequency (the pole of the compensator)

is then w=1/a T

6. Iterate on the design

ME 343 — Control Systems
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Frequency Response — Phase Lead Compensators

|D(s)|

To.1 1w, T 10 100

max

ol
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20 D(s) = Ts+1

o<l

als+1

05 oo 1-sing,,
1+sing,,

It is a high-pass filter and approximates
PD control. It is used whenever substantial
improvement in damping is needed. It
tends to increase the speed of response of
a system for a fixed low-frequency gain.
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Frequency Response — Phase Lead Compensators

1. Determine the open-loop gain X to satisfy error or bandwidth
requirements:

- To meet error requirement, pick K to satisfy error
constants (K, K,, K,) so that ¢, specification is met.

- To meet bandwidth requirement, pick K so that the
open-loop crossover frequency is a factor of two below the
desired closed-loop bandwidth.

2. Determine the needed phase lead — o based on the PM
specification.  _!-s=n¢, .,
lesing,, .
3. Pick w,,, to be at the crossover frequency.
4. Determine the zero and pole of the compensator.
z=1/T= Wy @' p=l/aT= wy, a'?
5. Draw the compensated frequency response and check PM.
6. Iterate on the design. Add additional compensator if needed.
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Frequency Response — Phase Lag Compensators

‘ D(s) = Ts+1

o>1

ols +1°

0° v ‘
It is a low-pass filter and approximates PI
—30° \/ ‘ control. It is used to increase the low

£D(s) —60°

| frequency gain of the system and improve
‘ steady state response for fixed bandwidth.

~90° For a fixed low-frequency gain, it will

—120°

decrease the speed of response of the system.

0.1 1 10
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Frequency Response — Phase Lag Compensators

1.

6.

ME 343 — Control Systems

Determine the open-loop gain K that will meet the PM
requirement without compensation.

Draw the Bode plot of the uncompensated system with
crossover frequency from step 1 and evaluate the low-
frequency gain.

Determine o to meet the low frequency gain error
requirement.

Choose the corner frequency w=1/T (the zero of the
compensator) to be one decade below the new crossover
frequency w,.

The other corner frequency (the pole of the compensator)
is then w=1/a.T

Iterate on the design
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