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Linearization 

Dynamic System: 

Equilibrium 

Denote 

Taylor Expansion 
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Linearization 

Dynamic System: 

Equilibrium 

Denote 

Taylor Expansion 
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Linearization 
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Laplace Transform 

Function f(t) of time 
Piecewise continuous and exponential order  

0- limit is used to capture transients and discontinuities at t=0 
s is a complex variable (σ+jω) 

There is a need to worry about regions of convergence of 
the integral 

Units of s are sec-1=Hz 
A frequency 

If f(t) is volts (amps) then F(s) is volt-seconds (amp-seconds) 
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Laplace Transform Examples 
Step function – unit Heavyside Function  

After Oliver Heavyside (1850-1925) 

Exponential function 
After Oliver Exponential (1176 BC- 1066 BC) 

Delta (impulse) function δ(t) 
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Laplace Transform Table 
Signal Waveform Transform 

impulse 

step 

ramp 

exponential 

damped ramp 

sine 

cosine 

damped sine 

damped cosine 
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Laplace Transform Properties 

Linearity: (absolutely critical property) 

Integration property: 

Differentiation property: 
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Laplace Transform Properties 

Translation properties: 

s-domain translation: 

t-domain translation: 

Initial Value Property: 

Final Value Property: 

If all poles of F(s) are in the LHP  
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Laplace Transform Properties 

Time Scaling: 

Multiplication by time: 

Convolution: 

Time product: 
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Laplace Transform 

Exercise: Find the Laplace transform of the following waveform 

Exercise: Find the Laplace transform of the following waveform 

Exercise: Find the Laplace transform of the following waveform 
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Laplace Transform 

The diagram commutes 
Same answer whichever way you go 

Linear 
system 

Differential 
equation 

Classical 
techniques 

Response 
signal 

Laplace 
transform L 

Inverse Laplace 
transform L-1 

Algebraic 
equation 

Algebraic 
techniques 

Response 
transform 

Ti
m

e 
do

m
ai

n 
(t 

do
m

ai
n)

 Complex frequency domain 
(s domain) 
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Solving LTI ODE’s via Laplace Transform 

Initial Conditions: 

Recall 

For a given rational U(s) we get Y(s)=Q(s)/P(s) 
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Computing Transfer Functions via Laplace Transform 

Assume all Initial Conditions Zero: 

Input Output 
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Laplace Transform 

Exercise: Find the Laplace transform V(s) 

Exercise: Find the Laplace transform V(s) 

What about v(t)? 
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Rational Functions 

We shall mostly be dealing with TFs which are 
rational functions – ratios of polynomials in s 

pi are the poles and zi are the zeros of the function 

K is the scale factor or (sometimes) gain 

A proper rational function has n≥m 
A strictly proper rational function has n>m 
An improper rational function has n<m 
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Partial Fraction Expansion - Residues at Simple Poles 

Functions of a complex variable with isolated, finite 
order poles have residues at the poles 

Residue at a simple pole: 
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Partial Fraction Expansion - Residues at multiple poles 

Example: 

Residue at a multiple pole: 
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Partial Fraction Expansion - Residues at Complex Poles 

Compute residues at the poles 

Bundle complex conjugate pole pairs into second-
order terms if you want … but you will need to be 
careful! 

Inverse Laplace Transform is a sum of complex 
exponentials. But the answer will be real. 
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Inverting Laplace Transforms in Practice 

We have a table of inverse LTs 
Write F(s) as a partial fraction expansion 

Now appeal to linearity to invert via the table 
Surprise! 
Nastiness: computing the partial fraction expansion is best 
done by calculating the residues 
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Inverse Laplace Transform 

) 5 2 )( 1 ( 
) 3 ( 20 ) ( 2 + + + 

+ 
= 

s s s 
s s F 

Exercise: Find the Inverse Laplace transform of 
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Inverse Laplace Transform 

Exercise: Find v(t) 

Exercise: Find v(t) 

What about v(t)? 
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Not Strictly Proper Laplace Transforms 

Find the inverse LT of 

Convert to polynomial plus strictly proper rational function 
Use polynomial division 

Invert as normal 
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Impulse Response 

Dirac’s delta: 

Integration is a limit of a sum  
⇓  

u(t) is represented as a sum of impulses 

By superposition principle, we only need unit impulse response 

System Response: 

Response at t to an impulse applied at τ  of amplitude u(τ )  
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Impulse Response 

Convolution: 

s-domain: 

t-domain: 

The system response is obtained by convolving the input with 
the impulse response of the system. 

The system response is obtained by multiplying the transfer 
function and the Laplace transform of the input. 

Impulse response  

Impulse response  
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Block Diagrams 

Series: 

+ 

+ 

Parallel: 
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Block Diagrams 
Negative Feedback: 

- 

+ 
Error signal 

Output 

Feedback signal 

Reference input 

Rule: Transfer Function=Forward Gain/(1+Loop Gain) 
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Block Diagrams 
Positive Feedback: 

+ 

+ 
Error signal 

Output 

Feedback signal 

Reference input 

Rule: Transfer Function=Forward Gain/(1-Loop Gain) 
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Block Diagrams 

Moving through a branching point: 

Moving through a summing point: 

+ 

+ 

+ 

+ 
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Block Diagrams 

- 

+ + 
- 

Example: 
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Mason’s Rule 

1 2 3 4

+ 

+ + 
+ 

+ 

+ 

+ 
+ 

nodes branches 

Signal Flow Graph 
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Mason’s Rule 
Path: a sequence of connected branches in the direction of the 
signal flow without repetition 
Loop: a closed path that returns to its starting node 
Forward path: connects input and output 
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Mason’s Rule 

1 2 3 4

Example: 
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Impulse Response 

Dirac’s delta: 

Integration is a limit of a sum  
⇓  

u(t) is represented as a sum of impulses 

By superposition principle, we only need unit impulse response 

System Response: 

Response at t to an impulse applied at τ  of amplitude u(τ )  
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Impulse Response 

Convolution: 

s-domain: 

t-domain: 

The system response is obtained by convolving the input with 
the impulse response of the system. 

The system response is obtained by multiplying the transfer 
function and the Laplace transform of the input. 

Impulse response  

Impulse response  

ME 343 – Control Systems 36 

Time Response vs. Poles 
Real pole: 

Time Constant 

Impulse  
Response 

Stable 

Unstable 
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Time Response vs. Poles 

Real pole: 

Time Constant 

Step  
Response 

Impulse  
Response 
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Time Response vs. Poles 
Complex poles: Impulse  

Response 

Undamped natural frequency 

Damping ratio 
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Time Response vs. Poles 
Complex poles: 

Impulse  
Response 

Stable 

Unstable 
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Time Response vs. Poles 
Complex poles: 

Impulse  
Response 
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Time Response vs. Poles 
Complex poles: 

Step  
Response 
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Time Response vs. Poles 

Complex poles: 

CASES: 

Undamped 

Underdamped 

Critically damped 

Overdamped 
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Time Response vs. Poles 

ME 343 – Control Systems 44 

Time Domain Specifications 
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Time Domain Specifications 
1- The rise time tr is the time it takes the system to 
reach the vicinity of its new set point 
2- The settling time ts is the time it takes the system 
transients to decay 
3- The overshoot Mp is the maximum amount the 
system overshoot its final value divided by its final 
value 
4- The peak time tp is the time it takes the system to 
reach the maximum overshoot point 
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Time Domain Specifications 
Design specification are given in terms of  

These specifications give the position of the poles 

Example: Find the pole positions that guarantee 
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Time Domain Specifications 
Additional poles:  
1- can be neglected if they are sufficiently to the left 
of the dominant ones. 
2- can increase the rise time if the extra pole is within 
a factor of 4 of the real part of the complex poles. 

Zeros:  
1- a zero near a pole reduces the effect of that pole in 
the time response. 
2- a zero in the LHP will increase the overshoot if the 
zero is within a factor of 4 of the real part of the 
complex poles (due to differentiation). 
3- a zero in the RHP (nonminimum phase zero) will 
depress the overshoot and may cause the step 
response to start out in the wrong direction. 
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Stability 

Impulse response:  
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Stability 

We want:  

Definition: A system is asymptotically stable (a.s.) if  

Characteristic polynomial: 

Characteristic equation: 
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Stability 

Necessary condition for asymptotical stability (a.s.):  

Use this as the first test! 

If any ai<0, the the system is UNSTABLE! 

Example: 
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Routh’s Criterion 

Necessary and sufficient condition 
Do not have to find the roots pi!  

Routh’s Array: 

Depends on whether 
n is even or odd 
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Routh’s Criterion 

How to remember this?  

Routh’s Array: 
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Routh’s Criterion 

The criterion: 

•  The system is asymptotically stable 
if and only if all the elements in the first 
column of the Routh’s array are positive 

•  The number of roots with positive real 
parts is equal to the number of sign 
changes in the first column of the Routh 
array 

ME 343 – Control Systems 54 

Routh’s Criterion 

Example 1: 

Example 2: 

Example 3: 

Example 4: 
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Routh’s Criterion 

Example: Determine the range of K over which the 
system is stable 

- 

+ 
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Routh’s Criterion 

Special Case I: Zero in the first column 
We replace the zero with a small positive constant 
ε>0 and proceed as before. We then apply the 
stability criterion by taking the limit as ε→0  

Example: 
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Routh’s Criterion 

Special Case II: Entire row is zero 
This indicates that there are complex conjugate pairs.  
If the ith row is zero, we form an auxiliary equation 
from the previous nonzero row: 

Example: 

Where βi are the coefficients of the (i+1)th row in the 
array. We then replace the ith row by the coefficients 
of the derivative of the auxiliary polynomial.  

ME 343 – Control Systems 58 

Properties of Feedback 

Disturbance Rejection: 

- 

+ + 
+ 

+ 
+ 

Open loop 

Closed loop 
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Properties of Feedback 

Disturbance Rejection: 

Choose control s.t. for w=0,y≈r 

Open loop: 

Closed loop: 

Feedback allows attenuation of disturbance without 
having access to it (without measuring it)!!! 

IMPORTANT: High gain is dangerous for dynamic response!!! 
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Properties of Feedback 

Sensitivity to Gain Plant Changes 

- 

+ + 
+ 

+ 
+ 

Open loop 

Closed loop 
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Properties of Feedback 

Sensitivity to Gain Plant Changes 

Let the plant gain be 

Open loop: 

Closed loop: 

Sensitivity: 

Example: 

Feedback reduces sensitivity to plant variations!!! 
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Steady-state Tracking 

The Unity Feedback Case 

- 

+ 

Test Inputs: k=0: step (position) 

k=1: ramp (velocity) 

k=2: parabola (acceleration) 
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Steady-state Tracking 

The Unity Feedback Case 

- 

+ 

Steady State Error: 

Final Value 
Theorem 

Type n 
System 
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Steady-state Tracking 
The Unity Feedback Case 

Steady State Error: 

- 

+ 

Type n 
System 

Type (n) 

Type 0 

Type 1 

Type 2 

Step (k=0)              Ramp (k=1)           Parabola (k=2) 

Input (k) 
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Steady-state Tracking 
Position Constant 

Velocity Constant 

Acceleration Constant 

n: Degree of the poles of CG(s) at the origin (the number of 
integrators in the loop with unity gain feedback) 

•  Applying integral control to a plant with no zeros at the 
origin makes the system type ≥ I 
•  All this is true ONLY for unity feedback systems 
•  Since in Type I systems ess=0 for any CG(s), we say that 
the system type is a robust property. 
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Steady-state Disturbance Rejection 

The Unity Feedback Case 

- 

+ 
+ 

+ 

Set r=0.  
Want Y(s)/W(s)=0. 

Steady State Error: e=r-y=-y Final Value 
Theorem 
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Steady-state Disturbance Rejection 
The Unity Feedback Case 

Steady State Output: 

Type (n) 

Type 0 

Type 1 

Type 2 

Step (k=0)              Ramp (k=1)           Parabola (k=2) 

Disturbance (k) 

- 

+ 
+ 

+ 
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Steady-state Disturbance Rejection 
Example: 

- 

+ 
+ 

+ 
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PID Controller 
PID: Proportional – Integral – Derivative 

P Controller: 

- 

+ 

Step Reference: 

• Proportional gain is high 
• Plant has a pole at the origin 

True when: 

High gain proportional feedback (needed for good tracking) 
results in underdamped (or even unstable) transients. 
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PID Controller 
P Controller: Example (P_controller.m) 

- 

+ 

  Underdamped transient for large proportional gain 
  Steady state error for small proportional gain 
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PID Controller 
PI Controller: 

- 

+ 

Step Reference: 

•  It does not matter the value of the proportional gain 
•  Plant does not need to have a pole at the origin. The controller has it! 

Integral control achieves perfect steady state reference tracking!!! 
Note that this is valid even for Kp=0 as long as Ki≠0 
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PID Controller 
PI Controller: Example (PI_controller.m) 

- 

+ 

DANGER: for large Ki the characteristic equation has roots in the RHP 

Analysis by Routh’s Criterion 
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PID Controller 
PI Controller: Example (PI_controller.m) 

Necessary Conditions: 

This is satisfied because 

Routh’s Conditions: 
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PID Controller 
PD Controller: 

- 

+ 

Step Reference: 

PD controller fixes problems with stability and damping by adding 
“anticipative” action 

• Proportional gain is high 
• Plant has a pole at the origin 

True when: 
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PID Controller 
PD Controller: Example (PD_controller.m) 

- 

+ 

  The damping can be increased now independently of Kp 
  The steady state error can be minimized by a large Kp 

ME 343 – Control Systems 76 

PID Controller 
PD Controller: 

- 

+ 

NOTE: cannot apply pure differentiation. 
In practice, 

is implemented as 
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PID Controller 

PID: Proportional – Integral – Derivative 

- 

+ 

PID Controller: Example (PID_controller.m) 
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PID Controller: Ziegler-Nichols Tuning 

•  Empirical method (no proof that it works well but 
it works well for simple systems) 
•  Only for stable plants 
•  You do not need a model to apply the method 

Class of plants: 
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PID Controller: Ziegler-Nichols Tuning 

METHOD 1: Based on step response, tuning to 
decay ratio of 0.25. 

Tuning Table: 
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PID Controller: Ziegler-Nichols Tuning 

METHOD 2: Based on limit of stability, ultimate 
sensitivity method. 

- 

+ 

•  Increase the constant gain Ku until the response 
becomes purely oscillatory (no decay – marginally 
stable – pure imaginary poles) 
•  Measure the period of oscillation Pu  
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PID Controller: Ziegler-Nichols Tuning 

METHOD 2: Based on limit of stability, ultimate 
sensitivity method. 

Tuning Table: 

The Tuning Tables are the same if you make: 

ME 343 – Control Systems 82 

PID Controller: Ziegler-Nichols Tuning 

Actuator Saturates:  
-  valve (fully open) 
-  aircraft rudder (fully deflected) 

(Output of the controller) 

(Input of the plant) 
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PID Controller: Ziegler-Nichols Tuning 

What happens?  
-  large step input in r 
-  large e 
-  large uc → u saturates 
-  eventually e becomes small 
-  uc still large because the integrator is “charged” 
-  u still at maximum 
-  y overshoots for a long time 

- 

+ 
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PID Controller: Ziegler-Nichols Tuning 

Plant with Anti-Windup: 

Plant without Anti-Windup: 
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PID Controller: Ziegler-Nichols Tuning 
In saturation, the plant behaves as: 

For large Ka, this is a system with very low gain and 
very fast decay rate, i.e., the integration is turned off. 

Saturation/Antiwindup: Example (Antiwindup_sim.mdl) 
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Root Locus 
Controller 

- 

+ 

Plant 

Sensor 

Writing the loop gain as KL(s) we are interested in tracking 
the closed-loop poles as “gain” K varies 



44 

ME 343 – Control Systems 

Root Locus 
Characteristic Equation: 

The roots (zeros) of the characteristic equation are the 
closed-loop poles of the feedback system!!! 

The closed-loop poles are a function of the “gain” K 

Writing the loop gain as 

The closed loop poles are given indistinctly by the solution of: 

87 
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Root Locus 

when K varies from 0 to ∞ (positive Root Locus) or 
from 0 to -∞ (negative Root Locus)   

Phase condition 

Magnitude condition 

Phase condition 

Magnitude condition 

88 
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Root Locus by Characteristic Equation Solution 

Example: 
- 

+ 

Closed-loop poles: 

89 

ME 343 – Control Systems 

We need a systematic approach to plot the closed-loop poles 
as function of the gain K → ROOT LOCUS 

Root Locus by Characteristic Equation Solution 

90 
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Phase and Magnitude of a Transfer Function 

The factors K, (s-zj) and (s-pk) are complex numbers:  

91 
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Phase and Magnitude of a Transfer Function 

Now it is easy to give the phase and magnitude 
of the transfer function: 

92 
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Root Locus by Phase Condition 

Example: 
- 

+ 

belongs to the locus? 

93 
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Root Locus by Phase Condition 

belongs to the locus! 

Note: Check code rlocus_phasecondition.m 

94 
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Root Locus by Phase Condition 

We need a systematic approach to plot the closed-loop poles 
as function of the gain K → ROOT LOCUS 

95 
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Root Locus 

Basic Properties: 

•  Number of branches = number of open-loop poles  
•  RL begins at open-loop poles 

•  RL ends at open-loop zeros or asymptotes 

•  RL symmetrical about Re-axis 

when K varies from 0 to ∞ (positive Root Locus) or 
from 0 to -∞ (negative Root Locus)   

96 
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Root Locus 

Rule 1: The n branches of the locus start at the poles of L(s) 
and m of these branches end on the zeros of L(s). 
n: order of the denominator of L(s)  
m: order of the numerator of L(s)  

Rule 2: The locus is on the real axis to the left of and odd 
number of poles and zeros. 
In other words, an interval on the real axis belongs to the 
root locus if the total number of poles and zeros to the right 
is odd. 
This rule comes from the phase condition!!! 

97 
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Root Locus 

Rule 3: As K→∞, m of the closed-loop poles approach the 
open-loop zeros, and n-m of them approach n-m asymptotes 
with angles 

and centered at 

98 
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Root Locus 

Rule 4: The locus crosses the  jω axis (looses stability) where 
the Routh criterion shows a transition from roots in the left 
half-plane to roots in the right-half plane. 

Example: 

99 
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Root Locus 

Example: 

100 



51 

ME 343 – Control Systems 

Root Locus 

Design dangers revealed by the Root Locus:  

•  High relative degree: For n-m≥3 we have closed loop 
instability due to asymptotes. 

•  Nonminimum phase zeros: They attract closed loop poles 
into the RHP 

Note: Check code lecture16_a.m 

101 
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Root Locus 

Viete’s formula:  

When the relative degree n-m≥2, the sum of the closed loop 
poles is constant  

102 
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Phase and Magnitude of a Transfer Function 

The factors K, (s-zj) and (s-pk) are complex numbers:  

103 
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Phase and Magnitude of a Transfer Function 

Now it is easy to give the phase and magnitude 
of the transfer function: 

104 
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Phase and Magnitude of a Transfer Function 
Example: 

105 
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Root Locus- Magnitude and Phase Conditions 

when K varies from 0 to ∞ (positive Root Locus) or 
from 0 to -∞ (negative Root Locus)   

106 
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Root Locus 

Selecting K for desired closed loop poles on Root Locus:  

If so belongs to the root locus, it must satisfies the 
characteristic equation for some value of K  

Then we can obtain K  as  

107 
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Root Locus 

Example: 

sys=tf(1,poly([-1 -5])) 
so=-3+4i 
[K,POLES]=rlocfind(sys,so) 

Using MATLAB: 

108 
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Root Locus 
Example: 

When we use the absolute value formula we are assuming 
that the point belongs to the Root Locus! 

109 
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Root Locus - Compensators 

Example: 

Can we place the closed loop pole at so=-7+i5 only varying K? 
NO. We need a COMPENSATOR. 

The zero attracts the locus!!! 
110 
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Root Locus – Phase lead compensator 

Pure derivative control is not normally practical because of the 
amplification of the noise due to the differentiation and must 
be approximated: 

How do we choose z and p to place the closed loop pole 
at so=-7+i5? 

Phase lead  
COMPENSATOR 

When we study frequency response we will understand why 
we call “Phase Lead” to this compensator. 

ME 343 – Control Systems 

Root Locus – Phase lead compensator 
Example: 

Phase lead  
COMPENSATOR 

112 

Let us choose p=20 
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Root Locus – Phase lead compensator 
Example: 

Phase lead  
COMPENSATOR 

113 
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Root Locus – Phase lead compensator 

Selecting z and p is a trial an error procedure. In general: 

•  The zero is placed in the neighborhood of the closed-
loop natural frequency, as determined by rise-time or 
settling time requirements. 
•  The poles is placed at a distance 5 to 20 times the 
value of the zero location. The pole is fast enough to 
avoid modifying the dominant pole behavior. 

The exact position of the pole p is a compromise between: 

•  Noise suppression (we want a small value for p) 
•  Compensation effectiveness (we want large value for p) 

114 
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Root Locus – Phase lag compensator 
Example: 

Phase lag  
COMPENSATOR 

What can we do to increase Kp? Suppose we want Kp=10. 

We choose: 

115 
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Root Locus – Phase lag compensator 
Example: 

116 
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Root Locus – Phase lag compensator 

Selecting z and p is a trial an error procedure. In general: 

•  The ratio zero/pole is chosen based on the error 
constant specification. 
•  We pick z and p small to avoid affecting the dominant 
dynamic of the system (to avoid modifying the part of 
the locus representing the dominant dynamics) 
•  Slow transient due to the small p is almost cancelled 
by an small z. The ratio zero/pole cannot be very big. 

The exact position of z and p is a compromise between: 

•  Steady state error (we want a large value for z/p) 
•  The transient response (we want the pole p placed far 
from the origin) 

117 
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Root Locus - Compensators 

Phase lead compensator: 

Phase lag compensator: 

We will see why we call “phase lead” and “phase lag” to 
these compensators when we study frequency response 

118 



60 

ME 343 – Control Systems 

Frequency Response 

•  We now know how to analyze and design systems via  s-domain 
methods which yield dynamical information 

•  The responses are described by the exponential modes 
–  The modes are determined by the poles of the response Laplace 

Transform 

•  We next will look at describing system performance via frequency 
response methods 

•  This guides us in specifying the system pole and zero  positions 

119 
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Sinusoidal Steady-State Response 
Consider a stable transfer function with a 
sinusoidal input: 

•  Where the natural system modes lie 

– These are in the open left half plane Re(s)<0 

•  At the input modes s=+jω and s=-jω	



Only the response due to the poles on the imaginary 
axis remains after a sufficiently long time 

This is the sinusoidal steady-state response 

The Laplace Transform of the response has poles 
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Sinusoidal Steady-State Response 

•  Input 

•  Transform 

•  Response Transform 

•  Response Signal 

•  Sinusoidal Steady State Response 

forced response natural response 
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ME 343 – Control Systems 

Sinusoidal Steady-State Response 

•  Calculating the SSS response to 
•  Residue calculation 

•  Signal calculation 

) cos( ) ( φ ω + = t A t u 
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Sinusoidal Steady-State Response 

•  Response to 
 is 

–  Output frequency = input frequency 
–  Output amplitude = input amplitude × |G(jω)| 
–  Output phase        = input phase +     G(jω)  

•  The Frequency Response of the transfer function G(s) is given 
by its evaluation as a function of a complex variable at s=jω 

•  We speak of the amplitude response and of the phase response 
–  They cannot independently be varied 

»  Bode’s relations of analytic function theory 
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ME 343 – Control Systems 

Frequency Response 

•  Find the steady state output for v1(t)=Acos(ωt+φ) 

•  Compute the s-domain transfer function T(s) 
–  Voltage divider 

•  Compute the frequency response 

•  Compute the steady state output 

+ _ V1(s) 
sL 

R V2(s) 

+ 

- 
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Bode Diagrams 
•  Log-log plot of mag(T), log-linear plot of arg(T) versus ω	
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Bode Diagrams 

126 

The magnitude and phase of G(s) when s=jω is given by:  

Linear in the phases  

Nonlinear in the magnitudes 
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Bode Diagrams 

127 

Why do we express            in decibels?  

Linear in the phases  

Linear in the magnitudes (dB)  

By properties of the logarithm we can write: 

The magnitude and phase of G(s) when s=jω is given by:  

ME 343 – Control Systems 

Bode Diagrams 

128 

Why do we use a logarithmic scale? Let’s have a look at our example:  

Expressing the magnitude in dB:  

Asymptotic behavior:  

LINEAR FUNCTION in logω!!! We plot               as a function of logω.  
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Bode Diagrams 
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Why do we use a logarithmic scale? Let’s have a look at our example:  

Expressing the phase:  

Asymptotic behavior:  

LINEAR FUNCTION in logω!!! We plot               as a function of logω.  

ME 343 – Control Systems 

General Transfer Function: Real poles/zeros 

130 

Magnitude and Phase:  

Asymptotic behavior: 
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Bode Diagrams 
•  Log-log plot of mag(T), log-linear plot of arg(T) versus ω	
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-20dB/dec 

ME 343 – Control Systems 

Bode Diagrams 
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A cutoff frequency occurs when the gain is reduced from its 
maximum passband value by a factor        : 

Decade: Any frequency range whose end points have a 10:1 ratio  

Bandwith: frequency range spanned by the gain passband 
Let’s have a look at our example:  

This is a low-pass filter!!! Passband gain=1, Cutoff frequency=R/L 
The Bandwith is R/L!  
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Frequency Response 

133 

Stable Transfer Function 

•  After a transient, the output settles to a sinusoid with an 
amplitude magnified by            and phase shifted by             . 

•  Since all signals can be represented by sinusoids (Fourier 
series and transform), the quantities            and              are 
extremely important. 

•  Bode developed methods for quickly finding            and          
for a given           and for using them in control design.  

ME 343 – Control Systems 

Bode Diagrams 
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The magnitude and phase of G(s) when s=jω is given by:  

Linear in the phases  

Nonlinear in the magnitudes 
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Bode Diagrams 

135 

Why do we express            in decibels?  

Linear in the phases  

Linear in the magnitudes (dB)  

By properties of the logarithm we can write: 

The magnitude and phase of G(s) when s=jω is given by:  

ME 343 – Control Systems 

General Transfer Function (Bode Diagrams) 

136 

Classes of terms:  

1- 

2- 

3- 

4- 

The magnitude (dB) (phase) is the sum of the magnitudes (dB) 
(phases) of each one of the terms. We learn how to plot each term, 
we learn how to plot the whole magnitude and phase Bode Plot. 
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General Transfer Function: DC gain 

137 

Magnitude and Phase:  

ME 343 – Control Systems 

General Transfer Function: Poles/zeros at origin 
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Magnitude and Phase:  
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General Transfer Function: Real poles/zeros 
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Magnitude and Phase:  

Asymptotic behavior: 

ME 343 – Control Systems 

General Transfer Function: Real poles/zeros 
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General Transfer Function: Real poles/zeros 

141 

ME 343 – Control Systems 

General Transfer Function: Complex poles/zeros 
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Magnitude and Phase:  

Asymptotic behavior: 
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General Transfer Function: Complex poles/zeros 
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ME 343 – Control Systems 

General Transfer Function: Complex poles/zeros 

144 
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Frequency Response 

145 

Stable Transfer Function 

•  After a transient, the output settles to a sinusoid with an 
amplitude magnified by            and phase shifted by             . 

•  Since all signals can be represented by sinusoids (Fourier 
series and transform), the quantities            and              are 
extremely important. 

•  Bode developed methods for quickly finding            and          
for a given           and for using them in control design.  

ME 343 – Control Systems 

Bode Diagrams 
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The magnitude and phase of G(s) when s=jω is given by:  

Linear in the phases  

Nonlinear in the magnitudes 
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Bode Diagrams 

147 

Why do we express            in decibels?  

Linear in the phases  

Linear in the magnitudes (dB)  

By properties of the logarithm we can write: 

The magnitude and phase of G(s) when s=jω is given by:  

ME 343 – Control Systems 

General Transfer Function (Bode Diagrams) 
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Classes of terms:  

1- 

2- 

3- 

4- 

The magnitude (dB) (phase) is the sum of the magnitudes (dB) 
(phases) of each one of the terms. We learn how to plot each term, 
we learn how to plot the whole magnitude and phase Bode Plot. 



75 

ME 343 – Control Systems 

Bode Diagrams 

149 

Example: 

ME 343 – Control Systems 

Frequency Response: Poles/Zeros in the RHP 

150 

Example: 

•  Same             . 

•  The effect on              is opposite than the stable case. 

An unstable pole behaves like a stable zero 
An “unstable” zero behaves like a “stable” pole 

This frequency response cannot be found experimentally 
but can be computed and used for control design. 
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Bode Diagrams 

151 

A cutoff frequency occurs when the gain is reduced from its 
maximum passband value by a factor        : 

Decade: Any frequency range whose end points have a 10:1 ratio  

Bandwith: frequency range spanned by the gain passband 
Let’s have a look at our example:  

This is a low-pass filter!!! Passband gain=1, Cutoff frequency=R/L 
The Bandwith is R/L!  

ME 343 – Control Systems 

Frequency Response 

152 

Stable Transfer Function 

BODE plots 

NYQUIST plots 
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Nyquist Diagrams 

153 

How are the Bode and Nyquist plots related? 

They are two way to represent the same information 

ME 343 – Control Systems 

Nyquist Diagrams 
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Find the steady state output for v1(t)=Acos(ωt+φ) 

Compute the s-domain transfer function T(s) 
Voltage divider 

Compute the frequency response 

Compute the steady state output 

+ _ V1(s) 
sL 

R V2(s) 

+ 

- 
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Bode Diagrams 
•  Log-log plot of mag(T), log-linear plot of arg(T) versus ω	
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-20dB/dec 

ME 343 – Control Systems 

Nyquist Diagrams 
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1- 

2- 

3- 

4- 
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Nyquist Diagrams 

157 

ME 343 – Control Systems 

Nyquist Diagrams 

158 

General procedure for sketching Nyquist Diagrams:  

•  Find G(j0) 

•  Find G(j∞) 

•  Find ω* such that Re{G(jω*)}=0; Im{G(jω*)} is the 
intersection with the imaginary axis. 

•  Find ω* such that Im{G(jω*)}=0; Re{G(jω*)} is the 
intersection with the real axis. 

•  Connect the points  
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Nyquist Diagrams 

159 

Example:  

1- 

2- 

3- 

4- 

ME 343 – Control Systems 

Nyquist Diagrams 
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Example:  
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Nyquist Diagrams from Bode Diagrams 
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ME 343 – Control Systems 

Nyquist Stability Criterion 
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- 

+ 

When is this transfer function Stable?  

NYQUIST: The closed loop is asymptotically stable if the 
number of counterclockwise encirclements of the point   
(-1+j0) that the Nyquist curve of G(jω) is equal to the 
number of poles of G(s) with positive real parts (unstable 
poles) 

Corollary: If the open-loop system G(s) is stable, then the 
closed-loop system is also stable provided G(s) makes no 
encirclement of the point (-1+j0).  
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Nyquist Stability Criterion 

163 

ME 343 – Control Systems 

Nyquist Stability Criterion 

164 

When is this transfer function Stable?  

NYQUIST: The closed loop is asymptotically stable if the 
number of counterclockwise encirclements of the point   
(-1/K+j0) that the Nyquist curve of G(jω) is equal to the 
number of poles of G(s) with positive real parts (unstable 
poles) 

- 

+ 
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Neutral Stability 

165 

- 

+ 

Root locus condition: 

At points of neutral stability 
RL condition hold for s=jω 

Stability: At 
If ↑K leads to instability 
If ↓K leads to instability 

ME 343 – Control Systems 

Stability Margins 

166 

The GAIN MARGIN (GM) is the factor by which the gain 
can be raised before instability results. 

The PHASE MARGIN (PM) is the value by which the phase 
can be raised before instability results. 

UNSTABLE SYSTEM 

UNSTABLE SYSTEM 

PM is the amount by which the phase of            exceeds 
-180° when  

GM is equal to                                      at the frequency 
where                       .      
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Stability Margins 
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PM 

1/GM 

ME 343 – Control Systems 

Stability Margins 

168 

GM 

PM 
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Specifications in the Frequency Domain 

169 

1.   The crossover frequency ωc, which determines 
bandwith ωBW, rise time tr and settling time ts. 

2.   The phase margin PM, which determines the 
damping coefficient ζ and the overshoot Mp. 

3.   The low-frequency gain, which determines the 
steady-state error characteristics. 

ME 343 – Control Systems 

Specifications in the Frequency Domain 
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The phase and the magnitude are NOT independent! 

Bode’s Gain-Phase relationship: 
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Specifications in the Frequency Domain 

171 

The crossover frequency: 

ME 343 – Control Systems 

Specifications in the Frequency Domain 
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The Phase Margin: PM vs. Mp 
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Specifications in the Frequency Domain 
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The Phase Margin: PM vs. ζ 

ME 343 – Control Systems 

Frequency Response – Phase Lead Compensators 
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It is a high-pass filter and approximates 
PD control. It is used whenever substantial 
improvement in damping is needed. It 
tends to increase the speed of response of 
a system for a fixed low-frequency gain. 
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Frequency Response – Phase Lead Compensators 

175 

1.  Determine the open-loop gain K to satisfy error or bandwidth 
requirements:  
  - To meet error requirement, pick K  to satisfy error 
constants (Kp, Kv, Ka) so that ess specification is met. 
  - To meet bandwidth requirement, pick K  so that the 
open-loop crossover frequency is a factor of two below the 
desired closed-loop bandwidth. 

2.  Determine the needed phase lead → α based on the PM 
specification. 

3.  Pick ωMAX to be at the crossover frequency.  

4.  Determine the zero and pole of the compensator.  
  z=1/T= ωMAX α1/2  p=1/ α T= ωMAX α-1/2  

5.  Draw the compensated frequency response and check PM. 

6.  Iterate on the design. Add additional compensator if needed. 

ME 343 – Control Systems 

Frequency Response – Phase Lag Compensators 
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It is a low-pass filter and approximates PI 
control. It is used to increase the low 
frequency gain of the system and improve 
steady state response for fixed bandwidth. 
For a fixed low-frequency gain, it will 
decrease the speed of response of the system.  
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Frequency Response – Phase Lag Compensators 
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1.  Determine the open-loop gain K that will meet the PM 
requirement without compensation.  
   

2.  Draw the Bode plot of the uncompensated system with 
crossover frequency from step 1 and evaluate the low-
frequency gain. 

3.  Determine α to meet the low frequency gain error 
requirement. 

4.  Choose the corner frequency ω=1/T  (the zero of the 
compensator) to be one decade below the new crossover 
frequency ωc.  

5.  The other corner frequency (the pole of the compensator) 
is then ω=1/ α T. 

6.  Iterate on the design 
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Frequency Response – Phase Lead Compensators 
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It is a high-pass filter and approximates 
PD control. It is used whenever substantial 
improvement in damping is needed. It 
tends to increase the speed of response of 
a system for a fixed low-frequency gain. 
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Frequency Response – Phase Lead Compensators 
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1.  Determine the open-loop gain K to satisfy error or bandwidth 
requirements:  
  - To meet error requirement, pick K  to satisfy error 
constants (Kp, Kv, Ka) so that ess specification is met. 
  - To meet bandwidth requirement, pick K  so that the 
open-loop crossover frequency is a factor of two below the 
desired closed-loop bandwidth. 

2.  Determine the needed phase lead → α based on the PM 
specification. 

3.  Pick ωMAX to be at the crossover frequency.  

4.  Determine the zero and pole of the compensator.  
  z=1/T= ωMAX α1/2  p=1/ α T= ωMAX α-1/2  

5.  Draw the compensated frequency response and check PM. 

6.  Iterate on the design. Add additional compensator if needed. 
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Frequency Response – Phase Lag Compensators 

180 

It is a low-pass filter and approximates PI 
control. It is used to increase the low 
frequency gain of the system and improve 
steady state response for fixed bandwidth. 
For a fixed low-frequency gain, it will 
decrease the speed of response of the system.  



91 

ME 343 – Control Systems 

Frequency Response – Phase Lag Compensators 
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1.  Determine the open-loop gain K that will meet the PM 
requirement without compensation.  
   

2.  Draw the Bode plot of the uncompensated system with 
crossover frequency from step 1 and evaluate the low-
frequency gain. 

3.  Determine α to meet the low frequency gain error 
requirement. 

4.  Choose the corner frequency ω=1/T  (the zero of the 
compensator) to be one decade below the new crossover 
frequency ωc.  

5.  The other corner frequency (the pole of the compensator) 
is then ω=1/ α T. 

6.  Iterate on the design 


