ME 433 — STATE SPACE CONTROL

Lecture 1

ME 433 - State Space Control

State Space Control

+ Time/Place: Room 290, STEPS Building
M/W  12:45-2:00 PM

* Instructor: Eugenio Schuster,
Office: Room 454, Packard Lab,
Phone: 610-758-5253
Email: schuster@lehigh.edu,
Office hours: By appointment
* Webpage:
http://www.lehigh.edu/~eus204/Teaching/ME433/ME433.html

+ E-mail list: Make sure to be in the mailing list!!!
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State Space Control

State-space methods of feedback control system design and design
optimization for invariant and time-varying deterministic, continuous
systems; pole positioning, observability, controllability, modal control,
observer design, the theory of optimal processes and Pontryagin's
Maximum principle, the linear quadratic optimal regulator problem,
Lyapunov functions and stability theorems, linear optimal open loop
control; introduction to the calculus of variations. Intended for engineers
with a variety of backgrounds. Examples will be drawn from
mechanical, electrical and chemical engineering applications. MATLAB
is used extensively during the course for the analysis, design and
simulation.
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State Space Control — Part |

* Topics:

- Course description, objectives, examples

- Review of Classical Control

- Transfer functions <= state-space representations

- Solution of linear differential equations, linearization

- Canonical systems, modes, modal signal-flow diagrams
- Observability & Controllability

- Observability & Controllability grammians; Rank tests

- Stability

- State feedback control; Accommodating reference inputs
- Linear observer design

- Separation principle
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State Space Control — Part Il

* Topics:

- Static Optimization
Optimization without/with constraints
Numerical solution methods

- Dynamic Optimization
Discrete-time and continuous-time systems
Open loop and closed loop control
Linear Quadratic Regulator (LQR)
Pontryagin’s Minimum Principle

- Dynamic Programming
Bellman’s Principle of Optimality
Discrete-time and continuous-time systems
Hamilton-Jacobi-Bellman Equation

- Optimal Estimation/Kalman Filtering

Discrete-time and continuous-time systems
Linear Quadratic Gaussian Control (LQG)

ME 433 - State Space Control 5

Modern Control

* Books:

— B. Friedland, “Control System Design: An Introduction to State-
Space Methods,”
Dover Publications, 1986, ISBN: 0-486-44278-0.

— Kailath, “Linear Systems”

— Brogan, “Modern Control Theory”

— Rugh, “Linear System Theory”

— Dorf and Bishop, “Modern Control Systems”
— Antsaklis and Michel, “Linear Systems”

— Chen, “Linear system Theory and Design”
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Optimal Control and Estimation

 Books:

— D.S. Naidu, “Optimal Control Systems”
CRC Press, 2002, ISBN: 0-849-30892-5.

— D.E. Kirk, “Optimal Control Theory: An Introduction”
— Bryson and Ho, “Applied Optimal Control”
— Lewis and Syrmos, “Optimal Control”

— Anderson and Moore, “Optimal Filtering”
— Gelb, “Applied Optimal Estimation”

— Stengel, “Optimal Control and Estimation”
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Model Classification

Model Representation

—-

Control Technique

Spatial Dependence

Lumped parameter system
/=7
Ordinary Diff. Eq. (ODE)

Distributed parameter system
J/=7x)
Partial Diff. Eq. (PDE)

Linearity

Linear

Nonlinear

Temporal Representation

Continuous-time

Discrete-time

Domain Representation

Time

Frequency
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Spatial Dependence

Distributed Parameter Systems Lumped Parameter Systems

PDE ODE

on 19 on dn 1
¢————y|D —<-nV |+S,@r —<=——n,+S (¢
a  ror ( Tor ¢ ") @.r) dt T, )
% = 0 ne r=a = ne ne(0)= neO
ar r=0
Control: Interior Boundary

— O
— @

Linearity:  Nonlinear/Linear
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Reduction

Keep the PDE representation (problem specific)

| Linear/Nonlinear Distributed Parameter Control |

| Linear/Nonlinear Lumped Parameter Control |

9
Linearity
Nonlinear (ODE) Systems Linear (ODE) Systems
7 = gl y ey, 0 wa, Y0 v ay=b, q" 4t bu
%= ft,x,u) %= A(0)x+ B()u
Non-Autonomous = ..
ym h(t,x,u) X [x] x,,]r states y = C(t)x + D()u LTV
u input
= f(x,u) y output | X=Ax+Bu
Autonomous LTI
y=h(x,u) : y=Cx+Du
s @ Linearization 4'
Nonlinear Control E . .
@ Keep the nonlinearities
H
Output/State Feedback
Estimation: How to estimate states from input/output?
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Linearity

Particular type of nonlinearities: Constraints

LTI X=Ax+Bu u,y — sat(u),sat(y)  input/output constraints

y=Cx+Du X <X; <X state constraints

@ A priori —— Constraint is considered for control design

@ A posteriori —— Constraint is NOT considered for control design

Anti-windup Techniques
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Temporal Representation

Continuous-time Systems Discrete-time Systems

YD sa v Vevay=b u" D+t bu

Wed-Data Systems

AT |+ a A =1 b -+ a, 1k =) 1= bulkT J -+ b,ul (k= m)T |

Sampling Time

%(7) = Ax(¢) + Bu(?) Ak +1]= Ax|k |+ Bulk | I
¥(t) = Cx(t) + Du(t) [k J= Cx[k J+ Dok ]
System Identification: How to create models from data?

System Identification

Fault Detection and Isolation: How to detect faults from data?
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Domain Representation

Continuous-time Systems Discrete-time Systems
Y ua Y Vs vay=b, w" b kb a ke =1+ + a3k = n] = bulk [+ -+ b,ulk - m]
Modern Control

Laplace Transform

Z Transform Classical Control

(s” +a, " +ras+a, )/(s) = (bm,ls'”" o+ bs+b, )J(s)
(1 vaz+-+a, 2" vaz” )/(s) = Q% +:+b,z7" )J(s)

Y m melg L e -m
T(s) = (s) _ bmsn + bm_]sn_1 +-+bs+b, T(z) = Y(2) _ b+ + bmzi1 ]
U(s) as"+a, 8" +-+as+a, U(z) l+az+-+a, 2" +a,z”"
g AR mz) PRCEE) CREA R )
(s=p)s=p,)-(s=p,) (z-p)z=-p,)-(z-p,)
D; poles
s=jw z; Zeros R,
K gain
) — : LT (jw) jTy _ jT | LT(e™T)
T(jw)=[T(jo)e Frequency Response T(e™)= ‘T(e’ )‘e
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Optimality
Continuous-time Systems Discrete-time Systems
Y wa, Vs ray=b, u" 4k b Wk ap k=1 -+ a,ylk - n] = bulk |+ -+ bulk = m]
%= A()x + B(t)u Xy = Axy + By
y=C()x+D(t)u v, =Cx, + Dyu,

: 1 T 1 N T T
mlnExNSNxN +52 (xk Ox, +u, Rkuk)
uy =

r}ll(it?%xT(T)STx(T) + % !(xT (NOO)x(t) +u” (OR(EYu(r) )it

Optimal Control
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Robustness

How to deal with uncertainties in the model?

@ Non-model-based control

PID
Extremum Seeking

Model-based control

@ Robust Control —_— Design for a family of plants

@ Adaptive Control ~—— Update model (controller) in real time

| Robust & Adaptive Control |
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Model Classification

Model Representation

/mdparametersm Distributed parameter system

Spatial Dependence f=10® f=7@x)

rdinary Diff. Eq. (ODE) / Partial Diff. Eq. (PDE)

Control Technique

7 ) S
Linearity %} Nonlinear
N /

4 S

Temporal Representation W}

Discrete-time

/ N
Domain Representation | Time Frequency

4
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Dynamic Model

F=Ia Newton’s law

MECHANICAL SYSTEM:
/ damping coefficient

lo =—-Imgsinf -bw+T,

w=0 angular velocity
a=wn=0 angular acceleration
I =ml* moment of inertia

6 = —%9 ~E5in + <
ml / ml

Stable

Which are the equilibrium points when T,=07?
9’=¢9‘=0=>0=-fsin9=>0=0,n

At equilibrium:
Unstable
17

Open loop simulations: pend_par.m, pendol01.mdl
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Linearization
What happens around 6=0?
.. b . g. T
0=y= =——2y——s1n(y)+ =
ml [ ml

By Taylor Expansion:

sin(y)= yv+hot.= sin(y)== y

Linearized Equation:

oo b o g L
R G

sin(y)
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Laplace Transform

Linear
system
Differential
equation
Classical
techniques
Response

signal
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Algebraic
equation

Laplace
transform £

Algebraic
techniques

Time domain (t domain)

Inverse Laplace
transform £

Response
transform

Transfer Function

, b g T
usl = y=——-y-y+—5
e = Y mlzy [ 4 ml*
. . &g u
+—py+=y=—->  |_) Laplace Transform
Y mlz Y l Y ml2

. {m}=smF<s), U@ = 1) =}

o

1
Transfer Function G(s) = Y(s) = ”le
U(S) S2 + milzs +§.

Characteristic Equation
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Solution of the ODE

I.=0=y+ b12y + ‘?y =( What is the solutions y(t)?
m

Characteristic Equationi b \/( b )2 ] 4g

—_ a4 I o
> \\ml? /
P+l a+E0= -
ml*> 1 A 2
Glsy-— P p
LA W) =Ce™" +Che

The dynamics of the system is given by the roots of the
denominator (poles) of the trasfer function

real(1,,)<0 = STABLE SYSTEM

We use feedback control for PERFORMANCE
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Closed-loop Control

Y(s) _ C()G(s) R(s) + ~E(s) cGs) U(s) GGs) Y(s)
R(s) 1+C(s5)G(s)
E(s) 1
R(s) 1+C(s)G(s)
PID: Proportional - Integral — Derivative
U(s K
C(s) = (s) =K, +—"+Kps
E(s) S
y de(t)
u(t) = K e(t) + K,fe(r)dr +K,
0
Closed loop simulations: pid.m
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Closed-loop Control

R(S) + E(S) C(S) U(S) G(S) Y(S)
Y(s) _ C()G(s) _ U/ mPPYK, + Kps + K ,s%)
R(s) 1+C(s)G(s) s3+b+KDs2+ §+&s+£
mil? [ ml? mi?

We can place the poles at the desired
location to obtain the desired dynamics

CLASSICAL CONTROL (ME 343)

ME 433 - State Space Control 23

Linearization

What happens around 6=x?

O=m+x= X=—Z)2x-‘§sin(ﬂ+x)+

C
2
ml

C
2
ml

3y b :
X=—-—7X+ §51n(x)+
ml [
By Taylor Expansion:

sin(x)=x + hot.=sin(x)=x

Linearized Equation:
=
5 ) T
® = —72)(: + g)C + 62
ml / ml
ME 433 - State Space Cc))(ntrol 24
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State-variable Representation

b T
¥ = _7255 + gx + 7‘32 [[E> Reduce to first order equations:
ml / ml @
_ X, =X,
State Variable X=X — b T
Representation X, = X xz =-—>x, +§x1 + 02
ml / ml
X 0 1 0
1 .
xs[ ],usﬂ:x= g b |x+| 1 |u=Ax+Bu
X s _
2 / ml* mi*
. 2 b g
eig(A)=P:A -4 =0}=Ja: 2+ 2-5-0
ml /
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Solution of the ODE

I.=0=X%+ be - gx =(0 What is the solution x(1)?
m
Characteristic Equation 2
= R
Pr a8 0=p, =" m
ml*" 1 Ao 2
cig(A) = f:|A1 - 4= 0}= {)L:}LZ+%A—§=O} x(t) = Clel" + Czelat

The dynamics of the system is given by the eigenvalues of the system matrix

real(eig(A))>0 (real(i,A,)>0) = INSTABILITY

We use feedback control for STABILIZATION
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Linear State Feedback

0 1 0
x=|g& b |x+| ! lu=Ax+Bu
/ ml? ml?
u=-Kx=-|K, K,k
0 1
t=(4-BK)x=|g 1 ., _ b 1
I mlP " ml® ml*?

How do we choose K, and K, to make real(eig(A-BK))<07? Always possible?

How do we choose K, and K, to satisfy optimality condition?
How do we proceed when states are not measurable?

MODERN CONTROL (ME 433)

Closed loop simulations: pend_par.m, statevar_control_lin.m
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Nonlinear State Feedback

0 X, 0 i p

i=lg . b +| u u =-mglsin(x,) + ml*v

_7sm(x1) - mlz Xy m12 Feedback Linearization

[0 1 0 . ,
={y _ b x+[1]v=Ax+Bu

2

] ml 0 |

=-Kx=-K, K,y =x=(4"-BK)x= b
v x=-K, K x=( )x - K, _W_Kz

We choose K, and K, to make real(eig(A-B'’K))<0
u=-mglsin(6 - ) - ml’[K,(0 -m) + K,6_

NONLINEAR CONTROL (ME 350/450)

Closed loop simulations: pend_par.m, statevar_control_nolin.m
ME 433 - State Space Control pendclnolin01.mdl 28
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Nonlinear State Feedback

0 X, 0
g . b +| u
7 sin(x,) - W X, W

Parameters (m, [, b) are not well known:

MULTIVARIABLE ROBUST CONTROL (ME 350/450)

SYSTEM IDENTIFICATION AND ADAPTIVE CONTROL (ME 350/450)

Flexible pendulum = ODE — PDE:
DISTRIBUTED PARAMETER SYSTEMS (ME 350/450)
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Controls Education at Lehigh

ME 343: CLASSICAL CONTROL FALL

ME 389: CONTROLS LAB SPRING

ME 433: MODERN & OPTIMAL CONTROL FALL

ME 350: ADVANCED TOPICS IN CONTROL SPRING
NONLINEAR CONTROL

MULTIVARIABLE ROBUST CONTROL
SYSTEM IDENTIFICATION AND ADAPTIVE CONTROL

DISTRIBUTED PARAMETER SYSTEMS
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