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Radioactivity

The discovery of artificial, or induced, radioactivity started a new line of
nuclear research and hundreds of artificial nuclei have been produced by
many different nuclear reactions.

A number of radioactive nuclides occur naturally on Earth:

− One of the most important is 40
19K, which has an isotopic abundance of

0.0118% and a half-life of 1.28× 109y. Potassium is an essential element
needed by plants and animals, and is an important source of human internal
and external radiation exposure.

Tritium 3
1H and 14

6 C are produced by cosmic ray interactions in the upper
atmosphere, and also can cause measurable human exposures. 14

6 C (half life
5730y), which is the result of a neutron reaction with 14

7 N in the atmosphere,
is incorporated into plants by photosynthesis. By measuring the decay of 14

6 C
in ancient plant material, the age of the material can be determined.

Other sources of terrestrial radiation are uranium, thorium, and their
radioactive progeny. All elements with Z > 83 are radioactive. Uranium and
thorium decay into daughter radionuclides, forming a series (or chain) of
radionuclides that ends with a stable isotope of lead or bismuth.
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Radioactivity

In all nuclear interactions, including radioactive decay, there are several
quantities that are always conserved or unchanged by the nuclear
transmutation.

The most important of these conservation laws include:

− Conservation of charge, i.e., the number of elementary positive and negative
charges in the reactants must be the same as in the products.

− Conservation of the number of nucleons, i.e., A is always constant. With the
exception of electron capture (EC) and β± radioactive decay, in which a
neutron (proton) transmutes into a proton (neutron), the number of protons
and neutrons is also generally conserved.

− Conservation of mass / energy (total energy). Although, neither rest mass nor
kinetic energy is generally conserved, the total (rest-mass energy equivalent
plus kinetic energy) is conserved.

− Conservation of linear momentum. This quantity must be conserved in all
inertial frames of reference.

− Conservation of angular momentum. The total angular momentum (or the
spin) of the reacting particles must always be conserved.
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Radioactivity

Figure 1: Types of radioactive decay.
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Radioactivity

Figure 2: Transition diagram for some key radioactive decays. N: neutrons, Z: protons.

Prof. Eugenio Schuster ME 362 - Nuclear Fusion and Radiation Fall 2024 5 / 71



Radioactivity

Figure 3: Radioactive decay diagram.
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Radioactivity

All radioactive decays, whatever the particles that are emitted or the rates at
which they occur, are described by a single law: the radioactive decay law.

The probability that an unstable parent nucleus will decay spontaneously into
one or more particles of lower mass/ energy is independent of the past history
of the nucleus and is the same for all radionuclides of the same type.

There is no way of predicting whether or not a single nucleus will undergo
decay in a given time period; however, we can predict the expected or
average decay behavior of a very large number of identical radionuclides.
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Radioactivity

Consider a sample containing a very large number N of the same radionuclide.

In a small time interval ∆t, ∆N of the atoms undergo radioactive decay.

The probability that any one of the radionuclides in the sample decays in ∆t
is thus ∆N/N , where ∆N ≜ N(t)−N(t+∆t) ≥ 0.

lf we performed such a measurement of the decay probability ∆N/N for
different time intervals ∆t and plot the ratio, we would obtain results such as
those shown in the figure below.

Figure 4: Measured decay rate (∆N/N)/∆t.
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Radioactivity

The statistical averaged decay probability per unit time, in the limit of
infinitely small ∆t, approaches a constant λ, i.e., we define

λ = lim
∆t→0

∆N/N

∆t
(1)

Each radionuclide has its own characteristic decay constant λ which, from its
definition, is the probability a radionuclide decays in a unit time for an
infinitesimal time interval. The smaller λ, the more slowly the radionuclides
decays. For stable nuclides, λ = 0.

The decay constant for a radionuclide is independent of most experimental
parameters such as temperature and pressure, since it depends only on the
nuclear forces inside the nucleus.
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Radioactivity

Consider a sample composed of a large number of identical radionuclides with
decay constant λ.

With a large number of radionuclides (N >>> 1), one can use continuous
mathematics to describe an inherently discrete process. Thus, N(t) is
interpreted as the average or expected number of radionuclides in the sample
at time t, a continuous quantity.

Then, the probability any one radionuclide decays in an interval dt is λdt.
Thus, the expected number of decays in the sample that occur in dt at time t
is λdtN(t). This must equal the change −dN in the number of radionuclides
in the sample (note that dN is negative since the population N decreases),
i.e.,

−dN = λN(t)dt ⇐⇒ dN(t)

dt
= −λN(t) (2)

This is consistent with the definition of λ in (1) since

λ = lim
∆t→0

∆N/N

∆t
=

1

N
lim

∆t→0

N(t)−N(t+∆t)

∆t
=

1

N

(
−dN(t)

dt

)
(3)

Prof. Eugenio Schuster ME 362 - Nuclear Fusion and Radiation Fall 2024 10 / 71



Radioactivity

The solution of this differential equation is

N(t) = Noe
−λt (4)

where No is number of radionuclides in sample at t = 0. This can be
obtained by integrating (2) by separation of variables, i.e.∫ N(t)

No

dN

N
= −λ

∫ t

0

dt ⇐⇒ lnN |N(t)
No

= −λt|t0 ⇐⇒ ln
N(t)

No
= −λt (5)

This exponential decay of a radioactive sample is known as the radioactive
decay law.

Such an exponential variation with time not only applies to radionuclides, but
to any process governed by a constant rate of change, such as decay of
excited electron states of an atoms, the rate of growth of money earning
compound interest, and the growth of human populations.
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Radioactivity

Any dynamic process governed by exponential decay (or growth) has a
remarkable property. The time it takes for it to decay to one-half of (or to
grow to twice) the initial value, T1/2, is a constant called the half-life.

N(t) = Noe
−λt → N(T1/2) = Noe

−λT1/2 ≡ No

2

Solving for T1/2 yields

T1/2 =
ln 2

λ
≈ 0.693

λ
(6)

Notice that the half-life is independent of time t.
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Radioactivity

After n half–lives, the initial number of radionuclides has then decreased by a
multiplicative factor of 1/2n, i.e.,

N(nT1/2) =
1

2n
No

The number of half–lives n needed for a radioactive sample to decay to a
fraction ϵ of its initial value is

ϵ ≡
N(nT1/2)

No
=

1

2n

which, upon solving for n, yields n = − ln ϵ
ln 2 ≈ −1.44 ln ϵ.

Alternatively, by fitting (6) into (4), the radioactive decay law can be
expressed in terms of the half-life as

N(t) = No

(
1

2

)t/T1/2

(7)
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Radioactivity

From the exponential decay law, we can determine some useful probabilities
and averages.

If we have No identical radionuclides at t = 0, we expect to have
N(t) = Noe

−λt atoms at a later time t. Thus, the probability P̄ that any
one of the atoms does not decay in a time interval t is

P̄ (t) =
N(t)

No
=

Noe
−λt

No
= e−λt (8)

The probability P that a radionuclide does decay in a time interval t is

P (t) = 1− P̄ (t) = 1− N(t)

No
=

No −N(t)

No
=

∆N(t)

No
= 1− e−λt (9)
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Radioactivity

As time interval becomes very small, i.e., t → ∆t << 1,

P (∆t) = 1− e−λ∆t = 1−
[
1− λ∆t+

1

2!
(λ∆t)2 − . . .

]
≈ λ∆t (10)

NOTE: We use the Taylor series expansion of e−λ∆t.

This approximation is in agreement with our earlier interpretation of the
decay constant λ (see equation (1) where we defined P (∆t) = ∆N/N) as
being the decay probability per infinitesimal time interval.

Let p(t)dt be the probability a radionuclide, which exists at time t = 0,
decays in the time interval between t and t+ dt. Clearly,

p(t)dt = P̄ (t)P (dt) = λe−λtdt (11)

where we have used (8) and (10) to write P̄ (t) = e−λt and P (dt) = λdt.
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Radioactivity

In radioactive samples, radionuclides decay at all times.

We can note from exponential decay law that an infinite time is required for
all radioactive atoms to decay.

However, as time increases, fewer atoms decay.

We can calculate the average lifetime of a radionuclide by using the decay
probability distribution p(t)dt in (11). Integrating by parts, the average or
mean lifetime Tavg of a radionuclide is thus

Tavg =

∫ ∞

0

tp(t)dt =

∫ ∞

0

tλe−λtdt

= −te−λt|∞0 +

∫ ∞

0

e−λtdt

=
1

λ
(12)
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Radioactivity

For detection and safety purposes, we are not really interested in the number
of radioactive atoms in a sample; rather we are interested in the number of
decays or transmutations per unit of time that occur within the sample.

This decay rate, or activity A(t), of a sample is given by

A(t) ≜ −dN(t)

dt
= λN(t) = λNoe

−λt = Aoe
−λt (13)

where Ao is the activity at t = 0. Since the number of radionuclides in a
sample decreases exponentially, the activity also decreases exponentially.
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Radioactivity

The SI unit used for activity is the becquerel (Bq) and is defined as one
transformation per second.

An older unit of activity, and one that is still sometimes encountered, is the
curie (Ci) defined as 3.7× 1010Bq. One Ci is the approximate activity of
one gram of 226

88 Ra (radium).

In many instances, the activity of a radioactive sample is normalized to the
mass or volume of the sample, e.g., curies / liter or Bq/g. This normalized
activity is called the specific activity, which we denoted by Â. Many safety
limits and regulations are based on the specific activity concept.
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Radioactivity

Of great practical importance is the determination of a radionuclide’s half-life
T1/2, or, equivalently, its decay constant λ.

Figure 5: Linear vs. logarithmic activity plots.

The decay constant λ is the slope of the lnA(t) line, i.e.

A(t) = λN(t) = Aoe
−λt ⇐⇒ lnA(t) = lnAo − λt (14)
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Radioactivity

Some radionuclides decay by more than one process.

To find the effective decay constant when the decay process has n competing
decay modes, write the differential equation that models the rate of decay by
denoting the decay constant for the ith mode by λi. Thus, the rate of decay
of the parent radionuclide is

dN(t)

dt
= −λ1N(t)− · · · − λnN(t) = −

n∑
i=1

λiN(t) = −λN(t) (15)

where λ =
∑n

i=1 λi is the overall decay constant.

The probability fi that the nuclide will decay by the ith mode is

fi =
decay rate by ith mode

decay rate by all modes
=

λi

λ
(16)
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Radioactivity

Example: What is the value of the decay constant and the mean lifetime of 40K
(Potassium) (half-life 1.29 Gy)?

Solution:

Using (6), the decay constant can be computed as

λ =
ln 2

T1/2
=

ln 2

1.29× 109y
= 5.37× 10−10y−1

Using (12), the average lifetime is Tavg = 1/λ = 1.86× 109y.
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Radioactivity

Example: The isotope 132I (Iodine) decays by β− emission to 132Xe (Xenon)
with a half-life of 2.3 h. (a) How long will it take for 7/8 of the original number of
132I nuclides to decay? (b) How long will it take for a sample of 132I to lose 95%
of its activity?

Solution:

(a) After 3 half-lives, the activity is 1/23 = 1/8 of the original activity. Using (7),
the time to obtain 1/8 of the original activity is t = 3× T1/2 = 6.9h.

(b) From the radioactive decay law (13), A(t)/A(0) = e−λt, upon solving for t,
the time required to reach a specified value of A(t)/A(0) is

t = − 1

λ
ln

[
A(t)

A(0)

]
In this problem λ = ln(2/T1/2) = 0.3014h−1 (from (6)) and A(t)/A(0) = 0.05.
Thus from the above equation we have

t = − 1

0.3014h−1
ln(0.05) = 9.34h.
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Radioactivity
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Radioactivity

Example: How many atoms are there in a 1.20 MBq source of 24Na (Sodium)
(half-life of 14.96 h)?

Solution:

Because A ≜ λN (from (13)), we have N(atoms) = A(Bq)/λ(s−1).

For 24Na we find from Table A.4 in the book that T1/2 = 14.96h = 5.385× 104s.
Then λ = ln 2/T1/2 = 1.287× 10−5s−1 (from (6)).

Thus the number of atoms of 24Na for a 1.20 MBq source is

N =
A

λ
=

1.200× 106

1.287× 10−5
= 9.32× 1010atoms.
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Radioactivity

Example: What is the probability that 64Cu (Copper) decays by positron
emission? The decay constants for the three decay modes of this radioisotope are
λβ+ = 0.009497h−1, λβ− = 0.02129h−1, and λEC = 0.02380h−1.

Solution:

From (15), the overall decay constant is

λ = λβ+ +λβ− +λEC = 0.009497h−1+0.02129h−1+0.02380h−1 = 0.05459h−1

Using (16), the probability that an atom of 64Cu eventually decays by positron
emission is

Probability of β+decay = λβ+/λ = 0.009497/0.05459 = 0.174

Prof. Eugenio Schuster ME 362 - Nuclear Fusion and Radiation Fall 2024 24 / 71



Radioactivity

Example: What is the probability that 64Cu (Copper) decays by positron
emission? The decay constants for the three decay modes of this radioisotope are
λβ+ = 0.009497h−1, λβ− = 0.02129h−1, and λEC = 0.02380h−1.

Solution:

From (15), the overall decay constant is

λ = λβ+ +λβ− +λEC = 0.009497h−1+0.02129h−1+0.02380h−1 = 0.05459h−1

Using (16), the probability that an atom of 64Cu eventually decays by positron
emission is

Probability of β+decay = λβ+/λ = 0.009497/0.05459 = 0.174

Prof. Eugenio Schuster ME 362 - Nuclear Fusion and Radiation Fall 2024 24 / 71



Radioactivity

A very important application of radioactive decay is the dating of geological
and archaeological specimens.

Measurements of daughter and parent concentrations in a specimen allow us
to determine the sample’s age because the decay rates of radionuclides in the
sample serve as nuclear clocks running at a constant rate.

If, at the time a sample was created, a known number of radioactive atoms of
the same type, N(0), was incorporated, the sample age t is readily found
from the remaining number of these atoms, N(t), and the radioactive decay
law N(t) = N(0)e−λt:

t = − 1

λ
ln

(
N(t)

N(0)

)
(17)
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Radioactivity

Method 1:

Unfortunately, we never know N(0). However, the initial ratio N(0)/Ns of
the radionuclide and some stable isotope of the same element can sometimes
be estimated with reliability. This ratio also decays with the same radioactive
decay law as the radionuclide. Thus,

t = − 1

λ
ln

(
N(t)/Ns

N(0)/Ns

)
(18)

The most common dating method using this approach is 14C dating. The
radionuclide 14C has a half-life of 5730y and is introduced into the
environment by cosmic-ray 14N(n, p)14C interactions in the atmosphere and
removed by radioactive decay, leading if unperturbed to an equilibrium ratio
of 14C to all carbon atoms in the environment of about

N14/NC = 1.23× 10−12. (19)

Prof. Eugenio Schuster ME 362 - Nuclear Fusion and Radiation Fall 2024 26 / 71



Radioactivity

It is usually easier to measure the specific activity of 14C in a sample, i.e.,
A14 per gram of carbon. This specific activity is proportional to the N14/NC

ratio, since

Â14 =
A14

g(C)
=

λ14N14

12NC

Na

=

(
N14

NC

)
λ14Na

12
= 0.237

Bq

g(C)
= 6.4

pCi

g(C)
(20)

Note:
(
N14
NC

)
λ14Na

12 =(1.23×10−12) ln 2
5730×365.25×24×3600s (6.022×10

23) 1
12g=0.237 1

gs=0.237Bq
g .

Note that the activity of a radionuclide can be normalized per gram of
radionuclide. In this case, a sample containing only N(t) atoms of the
radionuclide would have a mass m(t) = N(t)M/Na, where M is the molar
mass (g/mol) of the radionuclide and Na is the Avogadro Number. The
specific activity, on a per unit mass of the radionuclide, is then

Â(t) =
A(t)

m(t)
=

λN(t)

N(t)M/Na
=

λNa

M
= constant. (21)
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Radioactivity

All isotopes of carbon are incorporated by a living (biological) organism,
either through ingestion or photosynthesis, in the same proportion that exists
in its environment. Once the entity dies, the N14(t)/NC ratio decreases as
the 14C atoms decay.

Thus, a carbonaceous archaeological artifact, such as an ancient wooden axe
handle or a mummy, had an initial A14(0)/g(C) ratio of about 6.4pCi/g.
From a measurement of the present N14(t)/NC ratio, the age of the artifact
can be determined as

t = − 1

λ
ln

(
N14(t)/NC

N14(0)/NC

)
= − 1

λ
ln

(
A14(t)/g(C)

A14(0)/g(C)

)
(22)

Prof. Eugenio Schuster ME 362 - Nuclear Fusion and Radiation Fall 2024 28 / 71



Radioactivity

Example: What is the age of a sample of charcoal from an ancient fire that has a
A14(t)/g(C) ratio of 1.2pCi/g?

Solution:

The age of the wood, from (22)

t=− 1

λ
ln

(
A14(t)/g(C)

A14(0)/g(C)

)
=− 1

λ
ln

(
1.2× 10−12

6.4× 10−12

)
=−5730yr

ln 2
ln

(
1.2

6.4

)
≈13, 800yr
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Radioactivity

Method 2:

Consider a sample containing an initial number of identical parent radioactive
atoms N1(0), decaying to N2 stable daughter atoms. For simplicity, let us
assume there are initially no daughter nuclides in sample.

lf we further assume that there is no loss (or gain) of the parent N1 and
daughter N2 atoms from the sample since its formation, the number of these
atoms is then

N1(t) = N1(0)e
−λt and N2(t) = N1(0)[1− e−λt]. (23)

Dividing the second equation by the first and solving the resulting equation
for the sample age t yields

t =
1

λ
ln

(
1 +

N2(t)

N1(t)

)
(24)

The atom ratio N2(t)/N1(t) in the sample is the same as the concentration
ratio and can readily be found from mass spectroscopy or chemical analysis.
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Radioactivity

Example: Long-lived 232Th (Thorium) (T1/2 = 14.05× 109y) decays through a
series of much shorter lived daughters to the stable isotope 208Pb (Lead). The
number of atoms of 208Pb in a geological rock sample, assuming no initial
inventory of 208Pb in the sample, equals the number of initial 232Th atoms that
have decayed since the rock was formed. The number of decayed 232Th atoms in
the form of intermediate daughters, which are in secular equilibrium and have not
yet reached 208Pb, is negligibly small. What is the age of a rock sample that is
found to have mTh = 1.37g of 232Th and mPb = 0.31g of 208Pb?

Solution:

The corresponding atom ratio of these two isotopes is thus

NPb(t)

NTh(t)
=

mPbNa/MPb

mThNa/MTh
≈ mPb

mTh

ATh

APb

If there is no 208Pb initially in the rock, then from (24) the rock’s age is

t =
1

ln 2
T1/2

ln

(
1 +

mPb

mTh

ATh

APb

)
=

1
ln 2

14.05×109yr

ln

(
1 +

0.31

1.37

232

208

)
= 4.56× 109yr
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yet reached 208Pb, is negligibly small. What is the age of a rock sample that is
found to have mTh = 1.37g of 232Th and mPb = 0.31g of 208Pb?

Solution:

The corresponding atom ratio of these two isotopes is thus

NPb(t)

NTh(t)
=

mPbNa/MPb

mThNa/MTh
≈ mPb

mTh

ATh

APb

If there is no 208Pb initially in the rock, then from (24) the rock’s age is

t =
1

ln 2
T1/2

ln

(
1 +

mPb

mTh

ATh

APb

)
=

1
ln 2

14.05×109yr

ln

(
1 +

0.31

1.37

232

208

)
= 4.56× 109yr
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Radioactivity

Method 3:

Often, however, the initial value N2(0) of stable daughter is not zero, and a
slightly more refined analysis must be used. In this case, the number of
atoms of a radioactive parent and a stable daughter in a sample at age t is

N1(t) = N1(0)e
−λt and N2(t) = N2(0) +N1(0)[1− e−λt]. (25)

How do we handle the extra unknown variable?

Suppose there exists in a sample N ′
2 atoms of another stable isotope of the

same element as the daughter, one that is not formed as a product of
another naturally occurring decay chain. The ratio R = N2/N

′
2 is known

from the relative abundances of the stable isotopes of the element in question
and is a result of the mix of isotopes in the primordial matter from which the
solar system was formed.
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Radioactivity

In samples, without any of the radioactive parent, ratio remains constant,
i.e., N2(t)/N

′
2(t) = N2(0)/N

′
2(0) = Ro.

Samples in which R is observed to be larger than Ro must have been
enriched as result of the parent decay.

If we assume a sample has experienced no loss (or gain) of parent and
daughter nuclides since its formation, then we may assume N ′

2(t) = N ′
2(0).

Dividing the previous equations by N ′
2(t) = N ′

2(0) yields

N1(t)

N ′
2(t)

=
N1(0)

N ′
2(0)

e−λt and R(t) = Ro +
N1(0)

N ′
2(0)

[1− e−λt]. (26)

Then,

R(t) = Ro +
N1(t)

N ′
2(t)

eλt[1− e−λt] = Ro +
N1(t)

N ′
2(t)

[eλt − 1]. (27)
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Radioactivity

From this expression we can find the age, namely,

t =
1

λ
ln

{
1 +

N ′
2(t)

N1(t)
[R(t)−Ro]

}
(28)

Thus, age of sample can be determined by three atom ratios (easier to obtain
than absolute atom densities): N ′

2(t)/N1(t) and R(t) = N2(t)/N
′
2(t)

(measurements) and the primordial relative isotopic ratio Ro = N2(0)/N
′
2(0).
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Radioactivity

Example: Some geological samples contain the long-lived radionuclide Rubidium
87Rb (half-life 4.88× 1010y) which decays to stable 87Sr. Strontium has another
stable isotope 86Sr. In samples without 87Rb, the normal atomic 87Sr to 86Sr
ratio is Ro = 7.00/9.86 = 0.71. What is the age of a rock that has an atomic
87Sr to 86Sr ratio R(t) = 0.80 and an atomic 87Rb to 86Sr ratio of 1.48?

Solution:

The age of this rock is estimated from (28) as

t =
1

ln 2
T1/2

ln

{
1 +

N86Sr(t)

N97Rb(t)
[R(t)−Ro]

}
t =

1
ln 2

4.88×1010yr

ln

{
1 +

1

1.48
[0.8− 0.71]

}
= 4.16× 109yr
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Radioactivity

Transient behavior of number of atoms of a particular radionuclide in a
sample depends on nuclide’s rates of production and decay, initial values of it
and its parents, and rate at which it escapes from the sample.

The decay of radionuclides is often accompanied by the creation of new ones,
either from the decay of a parent or from production by nuclear reactions
such as cosmic ray interactions in the atmosphere or from neutron
interactions in a nuclear reactor.

If Q(t) is rate at which the radionuclide is being created, the rate of change
of number of radionuclides is

dN(t)

dt
= −rate of decay+ rate of production (29)
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Radioactivity

Therefore,
dN(t)

dt
= −λN(t) +Q(t) (30)

The most general solution of this differential equation is

N(t) = Noe
−λt +

∫ t

0

dt′Q(t′)e−λ(t−t′)

where again No is the number of radionuclides at t = 0.

For the special case that Q(t) = Qo (a constant production rate), this
integral can be evaluated analytically to give

N(t) = Noe
−λt +

Qo

λ
[1− e−λt] (31)

As t → ∞ we see N(t) → Ne = Qo/λ.
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Radioactivity

Often a radionuclide decays to another radionuclide which in turn decays to
yet another. The chain continues until a stable nuclide is reached. For
simplicity, we consider a three component chain. Such three-member decay
chains can be written schematically as

X1
λ1−→ X2

λ2−→ X3(stable)

At t = 0 the number of atoms of each type in the sample under consideration
is denoted by Ni(0), i = 1, 2, 3. The differential decay equations for each
species are (assuming no loss from or production in the sample)
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Radioactivity

dN1(t)

dt
= −λ1N1(t) (32)

dN2(t)

dt
= −λ2N2(t) + λ1N1(t) (33)

dN3(t)

dt
= λ2N2(t) (34)

With solutions

N1(t)=N1(0)e
−λ1t (35)

N2(t)=N2(0)e
−λ2t +

λ1N1(0)

λ2 − λ1
[e−λ1t − e−λ2t] (36)

N3(t)=N3(0)+N2(0)[1−e−λ2t]+
N1(0)

λ2 − λ1
[λ2(1−e−λ1t)−λ1(1−e−λ2t)] (37)
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Radioactivity

Example: A radioactive source is prepared by chemically separating Strontium
90Sr from other elements. Initially, the source contains only 90Sr
(T1/2 = 29.12y), but this radionuclide decays to a radioactive daughter Yttrium
90Y (T1/2 = 64.0h), which, after some time, reaches secular equilibrium with its
parent. What is the time after the source is created that the activity of the
daughter 90Y is within 5% of that of the parent?

NOTE: Secular equilibrium is a situation in which the quantity of a radioactive
isotope remains constant because its production rate (e.g., due to decay of a
parent isotope) is equal to its decay rate.

dN2(t)

dt
= −λ2N2(t) + λ1N1(t) with

dN2(t)

dt
≡ 0 ⇒ N2 =

λ1

λ2
N1 (38)
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Radioactivity

Solution:
90Sr(T1/2 = 29.12yr) →90 Y (T1/2 = 64h) →???

Sr: Strontium, Y: Yttrium. From (35) and (36),

A1(t) = A1(0)e
−λ1t

A2(t) = A1(0)
λ2

λ2 − λ1

[
e−λ1t − e−λ2t

]
Then,

0.05 =
A1(t)−A2(t)

A1(t)
= 1− A2(t)

A1(t)
= 1− A1(0)

A1(0)e−λ1t

λ2

λ2 − λ1

[
e−λ1t − e−λ2t

]
= 1− λ2

λ2 − λ1

[
1− e(λ2−λ1)t

]
,

With λ1 = ln 2/TSr
1/2 = 2.715× 10−6h−1 and λ2 = ln 2/TY

1/2 = 1.083× 10−2h−1,

t =
1

λ2 − λ1
ln

[
1− (1− 0.05)

λ2 − λ1

λ2

]
= 11.52d
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Radioactivity - Gamma Decay

The gamma-decay reaction of an excited isotope of element P can be written
as

A
ZP

∗ → A
ZP + γ (39)

Energy conservation for this nuclear reaction requires

M(AZP
∗)c2 ≡ M(AZP )c2 + E∗ = M(AZP )c2 + EP + Eγ (40)

where E∗ is the excitation energy (above the ground state) of the initial
parent nucleus, Eγ is the energy of the gamma photon, and EP is the recoil
kinetic energy of the resulting ground-state nuclide.

If the initial nuclide is at rest, the Q-value of this reaction is simply the sum
of the kinetic energies of the products by definition, which yields

Qγ = EP + Eγ = E∗ (41)
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Radioactivity - Gamma Decay

Linear momentum must also be conserved. Again with the parent at rest
before the decay (i.e., with zero initial linear momentum), the gamma photon
and recoil nucleus must move in opposite directions and have equal
magnitudes of linear momentum.

Since the photon has momentum pγ = Eγ/c and the recoil nuclide has
momentum Mpvp =

√
2MpEp, conservation of momentum requires

Eγ/c =
√
2MpEp ⇐⇒ EP =

E2
γ

2Mpc2
(42)

where MP = M(AZP ). Since Qγ = EP + Eγ , we can write

Eγ = Qγ

[
1 +

Eγ

2Mpc2

]−1

≈ Qγ = E∗ (43)
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Radioactivity - Gamma Decay

The approximation in this result follows from the fact that Eγ is at most
10− 20MeV , while 2Mpc

2 ≥ 4000MeV . Thus, in gamma decay, the kinetic
energy of the recoil nucleus is negligible compared to the energy of the
gamma photon and Eγ ≈ Qγ = E∗.

NOTE: Because of the comparatively large mass and low energy of the recoil
atom, momentum of the recoil nucleus is computed using laws of classical
mechanics.
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Radioactivity - Alpha Decay

In alpha decay, the nucleus of parent atom A
ZP emits an alpha particle. The

resulting nucleus of daughter atom A−4
Z−2D has two fewer neutrons and two

fewer protons.

Initially, daughter still has Z electrons, two too many (i.e. it is a doubly
negative ion [A−4

Z−2D]2−), but extra electrons quickly break away from atom,
leaving it in neutral state.

Fast moving doubly charged alpha particle quickly loses kinetic energy by
ionizing/exciting atoms along its path and acquires 2 electrons to become
neutral 4

2He atom.

Since atomic number of daughter is different from that of parent, the
daughter is a different chemical element.

The alpha decay reaction is thus represented by

A
ZP → [A−4

Z−2D]2− + 4
2α → [A−4

Z−2D] + 4
2He (44)
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Radioactivity - Alpha Decay

The Q-value of a nuclear reaction is defined as the decrease in the rest mass
energy (or increase in kinetic energy) of the product nuclei. For radioactive
decay, the Q-value is sometimes called the disintegration energy.

For alpha decay we have

Qα/c
2 = M(AZP )−

[
M([A−4

Z−2D]2−) +M(42α)
]

≈ M(AZP )−
[
M([A−4

Z−2D]) + 2me +M(42α)
]

≈ M(AZP )−
[
M([A−4

Z−2D]) +M(42He)
]

(45)

ln this reduction to atomic masses, the binding energies of the two electrons
in the daughter ion and in the He atom have been neglected since these are
small (several eV) compared to the Q-value (several MeV).
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Radioactivity - Alpha Decay

For alpha decay to occur, Qα, must be positive, i.e.

M(AZP ) > M([A−4
Z−2D]) +M(42He) (46)

The disintegration energy Qα equals the kinetic energy of the decay
products. How this energy is divided between the daughter atom and the α
particle is determined from the conservation of momentum.

Momentum of parent nucleus was zero before the decay, and thus, from
conservation of linear momentum, the total momentum of the products must
also be zero.

The alpha particle and the daughter nucleus must, therefore, leave the
reaction site in opposite directions with equal magnitudes of their linear
momentum to ensure the vector sum of their momenta is zero.
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Radioactivity - Alpha Decay

Conservation of energy requires

Qα = ED + Eα =
1

2
MDv2D +

1

2
Mαv

2
α (47)

Conservation of linear momentum requires

MDvD = Mαvα (48)

where MD ≡ M([A−4
Z−2D]) and Mα = M(42He).

These equations in the two unknowns vD and vα, can be solved to obtain the
kinetic energies of the products, i.e.

Qα=
1

2

M2
α

MD
v2α +

1

2
Mαv

2
α=

1

2
Mαv

2
α

[
Mα

MD
+ 1

]
=Eα

[
Mα +MD

MD

]
(49)
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Radioactivity - Alpha Decay

Hence, the kinetic energy of the alpha particle is

Eα = Qα

[
MD

MD +Mα

]
≈ Qα

[
AD

AD +Aα

]
(50)

Notice that, in alpha decay, the alpha particle is emitted with a well defined
energy. The recoiling nucleus carries off the remainder of the available kinetic
energy. We can note that ED = Qα − Eα, so that from the above result

ED = Qα

[
Mα

MD +Mα

]
≈ Qα

[
Aα

AD +Aα

]
(51)
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Radioactivity - Alpha Decay

The above calculation assumes that the alpha decay proceeds from the
ground state of the parent nucleus to the ground state of the daughter
nucleus.

As discussed earlier, sometimes the daughter nucleus is left in an excited
nuclear state (which ultimately relaxes to the ground state by gamma
emmision).

Nuclear mass of daughter is greater than the ground state mass by the mass
equivalent of excitation energy.

In these cases, the Qα-value is reduced by the excitation energy E∗ of the
excited state, i.e.,

Qα/c
2 ≈ M(AZP )−

[
M([A−4

Z−2D]) +M(42He)
]
− E∗/c2 (52)

For the alpha decay to take place, M(AZP ) must be greater than
M([A−4

Z−2D]) +M(42He) + E∗/c2.
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Radioactivity - Alpha Decay

Figure 6: Energy levels for α decay of 226Ra.
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Radioactivity - Alpha Decay

Example: What is the initial kinetic energy of the alpha particle produced in the
radioactive decay 226

88 Ra → 222
86 Rn+ 4

2He? (Ra: Radium, Rn: Radon).

Solution:

The Qα value in mass units (i.e., the mass defect) is, from (45) as

Qα ≈
{
M(22688 Ra)−

[
M([22286 Rn]) +M(42He)

]}
c2

= [226.025402− 222.107571− 4.00260325]u× 931.5Mev/u

= 0.005228u× 931.5Mev/u = 4.870MeV

The kinetic energy of the alpha particle from (50) is

Eα = Qα

[
MD

MD +Mα

]
≈ Qα

[
AD

AD +Aα

]
= 4.870MeV

[
222

222 + 4

]
= 4.784MeV

The remainder of the Qα energy is the kinetic energy of the product nucleus
(daughter), 222

86 Rn, namely, 4.870MeV − 4.783MeV = 0.087MeV .
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Radioactivity - Beta Decay

Many neutron-rich radioactive nuclides decay by changing a neutron in the
parent (P ) nucleus into a proton and emitting an energetic electron.

Different names are used for this decay: electron decay, beta minus decay,
negatron decay, negative electron decay, negative beta decay, or simply beta
decay.

The ejected electron is called a beta particle denoted by β−. The daughter
atom, with one more proton in the nucleus, initially lacks one orbital electron,
and thus is a single charged positive ion, denoted by [AZ+1D]+. However, the
daughter quickly acquires an extra orbital electron from the surrounding
medium.

The general β− decay reaction is thus written as

A
ZP → [AZ+1D]+ + 0

−1e+ ν̄ (53)
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Radioactivity - Beta Decay

Here ν̄ is an antineutrino, a chargeless particle with very little, if any, rest
mass.

That a third product particle is involved with β− decay is implied from the
observed energy and momentum of the emitted β− particle.

If the decay products were only the daughter nucleus and the β− particle,
then, as in α decay, conservation of energy and linear momentum would
require that the decay energy be shared in very definite proportions between
them.

However, β− particles are observed to be emitted with a continuous
distribution of energies that has a well defined maximum energy (see figure
below).
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Radioactivity - Beta Decay

Figure 7: Energy spectra of 38Cl β− particles (Cl: Chlorine, Ar: Argon). Three groups
of β− particles are emitted.
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Radioactivity - Beta Decay

Pauli suggested in 1933 that at least three particles must be produced in a
β− decay. The vector sum of the linear momenta of three products can be
zero without any unique division of the decay energy among them.

In 1934 Fermi used Pauli’s suggestion of a third neutral particle to produce a
beta-decay theory which explained well the observed beta-particle energy
distributions.

This mysterious third particle, which Fermi named the neutrino (lit. “little
neutral one”), has since been verified experimentally. Nowadays it is
extensively studied by physicists developing fundamental theories of universe.

The maximum energy of the β− spectrum corresponds to a case in which the
neutrino obtains zero kinetic energy, and the decay energy is divided between
the daughter nucleus and the β− particle.
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Radioactivity - Beta Decay

The beta decay energy is readily obtained from the Q-value of the decay
reaction. Specifically,

Qβ−/c2 = M(AZP )−
[
M([AZ+1D]+) +mβ− +mν̄

]
≈ M(AZP )−

[{
M([AZ+1D])−me

}
+mβ− +mν̄

]
≈ M(AZP )−M(AZ+1D) (54)

Where we have used me = mβ− and mν̄ ≡ 0.

For β− decay to occur spontaneously, Qβ−must be positive or, equivalently,
the mass of the parent atom must exceed that of the daughter atom, i.e.,

M(AZP ) > M(AZ+1D) (55)
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Radioactivity - Beta Decay

Often in β− decay, the nucleus of the daughter is left in an excited state. For
example, 38Cl decays both to the ground state of the daughter 38Ar as well
as to two excited states.

Figure 8: Decay diagram of 38Cl (Cl: Chlorine, Ar: Argon). Three groups of β−

particles are emitted.
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Radioactivity - Beta Decay

The resulting β− energy spectrum is a composite of the β− particles emitted
in the transition to each energy level of the daughter.

For a decay to an energy level E∗ above the ground, the mass of the
daughter atom M(AZ+1D) must be replaced by the mass of the excited
daughter M(AZ+1D

∗) ≈ M(AZ+1D) + E∗/c2. Thus,

Qβ−/c2 = M(AZP )−M(AZ+1D)− E∗/c2 (56)

Because the kinetic energy of the parent nucleus is zero, the Qβ− decay
energy must be divided among the kinetic energies of the products. The
maximum kinetic energy of the β− particle occurs when the antineutrino
obtains negligible energy. In this case, since the mass of the β− particle is
much less than that of the daughter nucleus, Qβ− = ED + Eβ− ≈ Eβ− or
(Eβ−)max ≈ Qβ− .
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Radioactivity - Beta Decay

Example: The radionuclide 41Ar decays by β− emission to an excited level of
41K that is 1.293 MeV above the ground state. What is the maximum kinetic
energy of the emitted β− particle?

Figure 9: Decay diagram of 41Ar (Ar: Argon, K: Potassium.
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Radioactivity - Beta Decay

Solution:

We first find the Qβ− for this decay from (56) with the atomic masses in App. B
in the book. The result is

Qβ− =
{
M(4118Ar)−M(4119K) + E∗/c2

}
c2

= [40.9645008− 40.96182597]u× 931.5MeV/u− 1.293MeV

= 2.492MeV − 1.293MeV

= 1.199MeV

The maximum kinetic energy the beta particle can have equals this Q-value, i.e.,
(Eβ)max = 1.199MeV .
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Radioactivity - Positron Decay

Nuclei that have too many protons for stability often decay by changing a
proton into a neutron.

In this decay mechanism, an anti-electron or positron β+ or 0
+1e, and a

neutrino ν are emitted.

The daughter atom, with one less proton in the nucleus, initially has one too
many orbital electrons, and thus is a negative ion, denoted by [AZ−1D]−.

However, the daughter quickly releases the extra orbital electron to the
surrounding medium and becomes a neutral atom. The β+ decay reaction is
written as

A
ZP → [AZ−1D]− + 0

+1e+ ν (57)
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Radioactivity - Positron Decay

The positron has the same physical properties as an electron, except that it
has one unit of positive charge. The positron β+ is the antiparticle of the
electron.

The neutrino ν is required (as in β− decay) to conserve energy and linear
momentum since the β+ particle is observed to be emitted with a continuous
spectrum of energies up to some maximum value (Eβ+)max. The neutrino ν
is the antiparticle of the antineutrino ν̄ produced in beta-minus decay.

The decay energy is readily obtained from the Q-value of the decay reaction.
Specifically,

Qβ+/c2 = M(AZP )−
[
M([AZ−1D]−) +mβ+ +mν

]
≈ M(AZP )−

[{
M([AZ−1D]) +me

}
+mβ+ +mν

]
≈ M(AZP )−M(AZ−1D)− 2me
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Radioactivity - Positron Decay

The binding energy of the electron to the daughter ion and the neutrino mass
have been neglected. If the daughter nucleus is left in an excited state, the
excitation energy E∗ must also be included in the Qβ+ calculation, namely,

Qβ+/c2 = M(AZP )−M(AZ−1D)− 2me − E∗/c2 (58)

Thus, for β+ decay to occur spontaneously, Qβ+ , must be positive, i.e.,

M(AZP ) > M(AZ−1D) + 2me + E∗/c2 (59)

The maximum energy of the emitted positron occurs when the neutrino
acquires negligible kinetic energy, so that the Qβ+ energy is shared by the
daughter atom and the positron.
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Radioactivity - Positron Decay

Because the daughter atom is so much more massive than the positron (by
factors of thousands), almost all the Qβ+ energy is transferred as kinetic
energy to the positron. Thus (Eβ+)max = Qβ+ .

The emitted positron loses its kinetic energy by ionizing and exciting atomic
electrons as it moves through the surrounding medium.

Eventually, it captures an ambient electron, forming for a brief instant a
pseudo-atom called positronium before they annihilate each other. Their
entire rest mass energy 2mec

2 is converted into photon energy (the kinetic
energy at the time of annihilation usually being negligible).

Before the annihilation, there is zero linear momentum, and there must be no
net momentum remaining; thus, two photons traveling in opposite directions
must be created, each with energy E = mec

2 = 0.511MeV .
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Radioactivity - Electron Capture

In the quantum mechanical model of the atom, the orbital electrons have a
finite (but small) probability of spending some time inside the nucleus, the
innermost K-shell electrons having the greatest probability.

It is possible for an orbital electron, while inside the nucleus, to be captured
by a proton, which is thus transformed into a neutron.

Conceptually we can visualize this transformation of the proton as
p+ 0

−1e → n+ ν, where the neutrino is again needed to conserve energy and
momentum. The general electron capture (EC) decay reaction is written as

A
ZP → A

Z−1D
∗ + ν (60)

where the daughter is generally left in an excited nuclear state with energy
E∗ above ground level.
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Radioactivity - Electron Capture

Unlike in most other types of radioactive decay, no charged particles are
emitted. The only nuclear radiations emitted are gamma photons produced
when the excited nucleus of the daughter relaxes to its ground state. As the
outer electrons cascade down in energy to fill the inner shell vacancy, X rays
are also emitted.

The decay energy is readily obtained from the Q-value of the decay reaction.

QEC/c
2 = M(AZP )−

[
M(AZ−1D

∗) +mν

]
= M(AZP )−

[
M(AZ−1D) +mν + E∗/c2

]
≈ M(AZP )−M(AZ−1D)− E∗/c2

Thus, for EC decay to occur spontaneously, QEC must be positive, i.e.,

M(AZP ) > M(AZ−1D) + E∗/c2 (61)
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Radioactivity - Neutron Decay

A few neutron-rich nuclides decay by emitting a neutron producing a different
isotope of the same parent element. Generally, the daughter nucleus is left in
an excited state which subsequently emits gamma photons as it returns to its
ground state. This decay reaction is

A
ZP → A−1

Z D∗ + 1
0n (62)

The decay energy is readily obtained from the Q-value of the decay reaction.

Qn/c
2 = M(AZP )−

[
M(A−1

Z D∗) +mn

]
= M(AZP )−M(A−1

Z D)−mn − E∗/c2

where E∗ is the initial excitation energy of the daughter nucleus.

Thus, for neutron decay to occur to even the ground state (E∗ = 0) of the
daughter,

M(AZP ) > M(A−1
Z D) +mn (63)
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Radioactivity - Proton Decay

A few proton-rich radionuclides decay by emission of a proton. In such
decays, the daughter atom has an extra electron (i.e., it is a singly charged
negative ion). This extra electron is subsequently ejected from the atom’s
electron cloud to the surroundings and the daughter returns to an electrically
neutral atom. The proton decay reaction is thus

A
ZP → [A−1

Z−1D
∗]− + 1

1p (64)

Thus, the Q-value for this reaction is

Qp/c
2 = M(AZP )−

[
M([A−1

Z−1D
∗]−) +mp

]
≈ M(AZP )−

[
M(A−1

Z−1D
∗) +me +mp

]
≈ M(AZP )−

[
M(A−1

Z−1D) + E∗/c2 +me +mp

]
≈ M(AZP )−M(A−1

Z−1D)−M(11H)− E∗/c2

Thus, for proton decay to occur and leave the daughter in the ground state
(E∗ = 0), it is necessary that

M(AZP ) > M(A−1
Z−1D) +M(11H) (65)
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Radioactivity - Internal Conversion

Often the daughter nucleus is left in an excited state, which decays (usually
within about 10−9s) to the ground state by the emission of one or more
gamma photons.

However, the excitation may also be transferred to an atomic electron
(usually a K-shell electron) causing it to be ejected from the atom leaving
the nucleus in the ground state but the atom singly ionized with an inner
electron-shell vacancy. Symbolically,

A
ZP

∗ → [AZP ]+ + 0
1e (66)

The inner electrons are very tightly bounded to the nucleus with large binding
energies BEK

e for K-shell electrons in heavy atoms. The amount of kinetic
energy shared by the recoil ion and the ejected electron should take this into
account.
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Radioactivity - Internal Conversion

The Q value for the IC decay is then calculated as follows:

QIC/c
2 = M(AZP

∗)−
[
M([AZP ]+) +me

]
≈

{
M(AZP ) + E∗/c2

}
−
[{
M(AZP )−me +BEK

e /c2
}
+me

]
≈

[
E∗ −BEK

e

]
/c2

This decay energy is divided between the ejected electron and the daughter
ion.

To conserve the zero initial linear momentum, the daughter and IC electron
must divide the decay energy as

Ee =

(
M(AZP )

M(AZP ) +me

)[
E∗ −BEK

e

]
≈ E∗ −BEK

e

ED =

(
me

M(AZP ) +me

)[
E∗ −BEK

e

]
≈ 0
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