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Magnetic Confinement

@ We concluded in previous lectures that confinement by magnetic fields
appears feasible.

@ The magnetic confinement concepts can be divided into two general
categories depending on field configuration:
(1) “open/linear” configurations;
(2) “closed" configurations.
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Figure 1: Open & closed magnetic configurations.
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Closed Configurations

@ We now turn to an examination of plasma confinement in closed
configurations.

@ Consider the simple toroidal field configuration shown below:
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Figure 2: Closed toroidal configuration.
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Closed Configurations

@ We would expect that the toroidal magnetic field B = B, would vary with
radial position in such a geometry.

@ We can determine this variation by applying Ampere's Law:
}{B ~ds = pol (1)

where I is the total inclosed current.

o Note that at a given radial position, r, B is constant along ds. Moreover, B
and ds are parallel. Thus,

o Wi
7{3-432des:depsz:uoz;»B:“ (2)
27r

@ The above relationship must hold for any r between r; and rs, since I is
fixed in this range.
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Closed Configurations

@ Therefore, the toroidal magnetic field in the torus is given by

Bi(r) = bt 3)

@ The toroidal magnetic field in a torus varies as 1/r.
@ Schematically this variation is represented as follows:
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Figure 3: Magnetic field spatial variation.
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Closed Configurations

@ Thus, a gradient exists in the radial direction and we must examine the effect
of a gradient field on the particle motion.

o Consider the motion of an ion in an idealized abrupt field gradient:

Examine
ion orbit B, ) 328 B; > B,
first
Ion moves upward
: "drifts" upward
T/
< T,

Figure 4: lon vertical drift.
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Closed Configurations

@ Consider now the motion of an electron in an idealized abrupt field gradient:

Bl > Bj r < I,
B, & B, ®
‘x" Electron Motion
Electron
© Drifts
Down

Figure 5: Electron vertical drift.
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Closed Configurations

@ Thus, in the gradient field considered above, ions drift upward and electrons
drift downward.

@ In a torus, the gradient in the toroidal field, B;, leads to a separation of ions
and electrons (by virtue of the drifts) and this results in an electric field E.

Figure 6: Induced electric field
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Closed Configurations

@ Now consider the ion motion in the presence of an electric field and a
magnetic field but no magnetic field gradient.

Ion feels deceleration and

+ mV ..Ll and r{
Ion
© -
E | e o
VAT
;:mvi/qB_ Ion feels acceleration and

mVJ_fand rf

Figure 7: lon horizontal drift

@ Thus the ion drifts perpendicular to both E and B (called E x B Drift).
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Closed Configurations

@ The electron motion in the presence of an electric field and a magnetic field
but no magnetic field gradient is shown below:

+ Electron accelerated and
Electron mV J_f andr!

tri

Electron decelerated and

Figure 8: Electron horizontal drift

@ Therefore, the electron drifts in the same direction as the ion (F x B Drift).
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Closed Configurations

@ Thus, in a torus, the drifts associated with the gradient of B; set up an
electric field and this electric field results in E x B drifts, which drive plasma
(electron and ions) to the chamber wall, destroying confinement. Recall that
in open geometry end losses are the fundamental confinement problem.

@ The various closed configurations differ primarily in the manner in which they
deal with the drift problem.

@ The preferred approach is to prevent the charge separation resulting from
gradient-B drifts and thereby avoid the £ x B problem.

@ The gradient-B drifts and resulting charge separation can be cancelled out by
twisting the toroidal field lines to form helices - the twisting of the field lines
is called providing “rotational transform”, and is depicted below:
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Closed Configurations

@ We add now a poloidal component to the magnetic field B, i.e. B = B, —|—Bp.

R = major radius
r = radial position
By = toroidal field

Bp = poloidal field (needed to give
rotational transform)

Y= pitch angle
'? _ ‘;
| tanv=Bp/Bt |

1 (iota) = rotational transform (radians)

Figure 9: Rotational transform.
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Closed Configurations

@ During one trip around the torus (27 R in the toroidal direction) a field line
also moves in the poloidal direction a distance, Ap, which can be expressed as

Ap B,
— = = — Ap =2m 4
R tany B, — Ap Rtan~y (4)

@ This distance can also be expressed in terms of the rotational transform, ¢.

t(radians)

A:
P 2w

27r = ur (5)

@ Equating the two expressions for Ap yields

R
2rRtany = ur < ¢ =271— tany (6)
r
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Closed Configurations

@ Since tany = %f' we obtain the following expression for the rotational
transform RB
L =2r==L
T Bt

()

@ In the literature the rotational transform is also discussed in terms of another
parameter called the safety factor ¢ — which is related to the fluid stability of
the plasma-field configuration.

@ The safety factor is defined as the number of rotations a field line makes in
the toroidal direction per rotation in the poloidal direction.

@ Since ¢/27 is the number of rotations in the poloidal direction per rotation in
the toroidal direction,

1 2 2w r By

= = [ — 8
T2 T U T 2R T RB, (8)
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Closed Configurations

Z
Magnetic flux
T P surfaces minor radius p
N / ) - R P

Figure 10: Poloidal flux in a tokamak at point P (left). Flux surfaces (right)

N

Magnetic axis

@ The poloidal component of the helical magnetic lines defines nested toroidal
surfaces corresponding to constant values of the poloidal magnetic flux.

@ The poloidal flux ¢ at a point P in the (R, Z) cross section of the plasma
(i.e., poloidal cross section) is the total flux through the surface S bounded
by the toroidal ring passing through P, i.e., ¢ = % proldS.

@ The poloidal flux ¥ can be used as spatial coordinate in the 2D cross section.
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Closed Configurations

@ The rotational transform’s effects can be explained through this schematic:

Figure 11: Drift averaging.

@ An ion at position 1 will experience upward drift due to the field gradient and
will eventually move outward to the next flux surface at position 2.

o If there were no more upward drift, the particle would stay on this surface,
and it would have stepped away from center, leading to charge separation.
@ However, as the particle at 2 moves into the lower portion of the torus, it

continues to experience an upward drift which moves it back to the original
flux surface, position 3.
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Closed Configurations

@ Thus, averaged over many transits around the torus, the particles tend to
stay on given flux surfaces and do not tend to separate (i.e. do not
experience net upward/ net downward drifts).

@ The rotational transform provides an averaging of the drifts such that the net
drift is almost exactly zero and no FE is produced.

How do we produce rotational transform?
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Magnetic Confinement

@ The major confinement problem in a torus is associated with particle drifts.

o A gradient B drift, associated with the 1/r variation of By, results in charge
separation.

@ Charge separation creates an electrical field, E. The electric field, F, gives
rise to E x B drifts which drive plasma (ions and electrons) radially outward
— destroying magnetic confinement.

@ The basic method for dealing with this problem is to give the toroidal field a
helical pitch — by adding a field component in the poloidal direction. This
technique is referred to as “rotational transform.”

@ With rotational transform a particle exhibits an average drift approaching
zero — drifting upward from a flux surface in upper portion of the torus, but
drifting upward to the original flux surface in bottom portion of the torus.
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@ The tokamak scheme has been the most successful confinement approach
since the early 1970s and we will focus our attention on this scheme.

@ Tokamak is an acronym developed from the Russian words TOroidalnaya
KAmera ee MAgnitaya Katushka which means “toroidal chamber with
magnetic coils.”

@ The tokamak employs an induced current in the plasma and the associated
poloidal field to provide rotational transform.
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o Consider Faraday's Law of Induction applied to a conductor linking a
changing B field:

Conductor The induced electromotive force, gind,
A is given by:
o T
B ind = . —
. -l
where,

¢ = BA = Magnetic flux

and A is the area.

Figure 12: Induced electromotive force.

e If B is changing with time (A fixed), the direction of €;,4 (= IR) is such
that the induced current, I, flows in a direction to oppose dB/dt < d®/dt.

Fall 2024
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Tokamak

o Consider dB/dt decreasing:

B Applied

I I
dB/dt<0 2
— t
BInd

Figure 13: Induced magnetic field.

@ Thus, Bjnq tries to compensate for dB/dt < 0, that is, B;,q negates to some
extent the decreasing B applied.
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o Consider a transformer analog of the tokamak:

Iron core
IPrimary P I Secon dary
PN | P €
Power a P
supply Np z Ne 1;5
B ol

Figure 14: Transformer.

@ Driving a current in the primary, p, causes a flux change on the primary side,
d®,/dt (o< dB/dt) and this flux change also links the secondary side, s. The
EMF on the secondary side, €, , is given by:

¢ = I,Ry=—N,d®/dt
6 = —N,dd/dt
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@ The tokamak is a “transformer” with a single turn secondary — the plasma.
We can see the plasma as a wire in the shape of a big fat ring.

@ The magnetic flux change in the tokamak transformer induces a plasma
current, I,,, given by: A

LR, = Tdt 9)

where R, is the resistivity of the plasma.
@ We can get a reasonable estimate of the associated poloidal field, B,, in a
tokamak using a cylindrical approximation:

BV ANWANAWAY

ANPN
RENEN

UV VB,

Figure 15: Induced poloidal magnetic field.
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@ Using Ampere's Law:
pr -ds = piol, (10)

e Since B, is fixed at a given 7, and B, and ds are parallel,

7{1?,, -ds = y{des = pr{ds =uol, < Bp2mr=pu,l, (11)

ol
— Bp:” i

(12)

@ The induced current, I, gives rise to the poloidal field, B,, and the
interaction of this field with the applied toroidal field provides the rotational
transform.

@ Typical tokamak configurations are shown below.
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Figure 16: Tokamak coil configuration.
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Ohmic Poloidal Field Coil

Position and Shaping
Poloidal Field Coils

Poloidal Magnetic Field
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Figure 17: Tokamak coil configuration.
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@ The toroidal field on axis, B(R) is given by

HolN I,
Bi(R) = 2mR

(13)

where N1, is the total number of ampere turns in the toroidal coils and R is
the major radius.

@ Using a cylindrical approximation for the torus and Ampere's Law, we obtain
the following expression for the poloidal field, B,:

_ Lol
7{Bp -ds = pol, <= Bp(r) = # (14)

where I, is the induced plasma current and r is the plasma minor radius.
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Tokamak - Limits on

@ Since Py B2B*, the achievable value of beta, 3, has a profound effect on
the feasibility of fusion power.

@ Recall

B=—7- (15)

@ Here,
B? =B} + B.. (16)

@ We define beta poloidal, 3,, as
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Tokamak - Limits on
2nkT .
B _ mtat
e mnk;M (18)
B3

@ Thus,
Bp
210
@ After simplifications,
B? 1
B _ = — (19)
ﬁp P T+ D 1+ B%
B
L (20)
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o Finally,
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Tokamak - Limits on

@ Recall the safety factor, g, equals the number of rotations a field line makes
in the toroidal direction per rotation in the poloidal direction (27/¢).

@ At the plasma edge, the safety factor ¢(a) is given by

o(0) = Fpd (1)
@ The ratio, R/a, is called the aspect ratio A. Thus,

0 = g (22)

@ Thus,
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Tokamak - Limits on

o Stability considerations place limits on 3, and ¢ while A is determined by
engineering.

@ Stability requires that g(r) > 1.

q()

Figure 18: Typical q profile.

o If ¢ <1, major “disruptions” of the plasma is observed. Typical parameters
for a tokamak might be:

¢(0) > 1 and g(a) £ 3 (24)
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Tokamak - Limits on

o With regard to 3,, it has been observed that gross confinement deteriorates

for B, > 0.6A (25)

o Consider a tokamak with the following parameters: A =4, g(a) = 3 and
Bp = 0.5A. For this case,

(0.5)(4
2

2
B=17 O —_ ~0.0138 (26)

) __
42~ 145

@ The inherently low beta values of tokamaks must be increased in order to
make tokamaks economically attractive.

@ The tokamak program has examined several techniques for higher 3: circular
cross sections, 3 ~ 3 — 5%, elongated plasma, 8 ~ 10%, bean shaped
plasma, 8 ~ 10 — 15%, low aspect ratio, 8 ~ 10 — 15%.
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@ The induced current in the tokamak leads to ohmic heating of the plasma via
Iszp where R, is the resistance of the plasma.

o However, R, oc 1/T3/? — as the plasma gets hotter R, decreases and P,jmic
decreases.

@ Thus, it appears unlikely that ohmic heating in tokamaks will be sufficient to
raise the temperature to the ignition point and tokamaks will require auxiliary
heating.
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e Also, recall that IR, = —d®/dt, where & = BA. Thus, the induced current
persists only as long as d®/dt persists.

o For fixed area, A, d®/dt < dB/dt, and At is limited by AB which is limited
by technology.

@ Therefore, if I, is to be sustained by the transformer action, it will be limited
in duration by technology. Thus, in the transformer mode, a tokamak is a
pulsed device.

@ A large effort in tokamak research is aimed at non-inductive current drive —
delivering momentum in a preferred direction to the plasma particles (usually
electrons) — RF and beam techniques are being considered for this
application.
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Figure 19: Plasma Heating and Current Drives.
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Tokamak - Plasma System

—— R ——

Figure 20: Plasma system.

0 < r < a = Minor Radius, R = Major Radius, A =

2| =

= Aspect Ratio.  (27)
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Tokamak - Volume-Averaged Quantities

@ It is emphasized that plasma density, n, and temperature, T', vary with
position as indicated schematically below:

n T

-a 0 a T

Figure 21: Spatial dependence.

@ Experimentally we can measure n and T versus position and we can calculate
average quantities such as
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Tokamak - Volume-Averaged Quantities

@ Also < ov > depends on T and therefore, is also a function of position. We
can thus define the following average:

<ov>=<0v>Fp (29)
o Consider the volume averaged power density defined as

5 _ [ npnr < ov> EpdV

P 30
f v (30)

o Note that, in general, -
Pf 75 npnr< ov >Ef (31)

o However, ~
Pf = npnr< ov >Effp (32)
where f, is a profile factor defined as
f’rLDTLT<UU>Ede

fo= v ~ 1.5 — 2 (typically) (33)

npnr< ov >Ef
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Tokamak - Reactor Design

A DT tokamak plasma has the following fixed parameters:

e 7, =10°m=3, T, =T, = 10keV, ap = ap, Zeps =1 (purely hydrogenic)
@ Puyu. = 0 (ignition)

e R=6.6m
e B=5%
o f=2

These are questions we are typically interested in answering:
@ What is the necessary confinement time for ignition or given Q7
@ What is the necessary tokamak size?
@ What are the required magnetic fields (currents) to confine the plasma?
@ What is the resulting fusion power?
@ What are the resulting wall loadings?
NOTE:
@ Bremsstrahlung is not negligible (C' =5 x 10_37%)
o Assume B; >> B, (B? = B} + B2 ~ B})
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Tokamak - Confinement for Ignition

What is the needed confinement time to operate at ignition (P, = 0)?
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Tokamak - Confinement for Ignition

What is the needed confinement time to operate at ignition (P, = 0)?

Consider the power balance averaged over the volume (P, = P, + Pp),

Py=npnar<ocv>Eqfp PrL=(3nkT)/7E

Pp=Cn?T/?z
e e P B e eff
nZ  _ 3n.kT gty
Ze< ov>E.f, = - + Ca’T ) (34)

where we have used 7, = ip + Aix = 7, (quasineutrality), Aipfr = N /4,
N = fie + N; = 27i,. Solving for i.7x yields (Lawson Criterion)
3kT
1< ov>E,f, — CT'/?
Since kT = 10keV = < ov > = 1.1 x 107 22m3s~1, we obtain
_ reg 3x 10 x 1.6 x 10716
(neTE)ign: 1.1x10-22
L2200 — % 3.5 x 1.6 x 10713 x 2 — 5 x 10737 x (10)1/2
=1.64 x 102°m3s

Since 71, = 10*°m =3, 7p; 1 = 1.64s.

NeTE =
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Tokamak - Plasma Size for Ignition

What size of tokamak is needed for ignition (P, = 0)?

Prof. Eugenio Schuster ME 362 - Nuclear Fusion and Radiation Fall 2024



Tokamak - Plasma Size for Ignition

What size of tokamak is needed for ignition (P, = 0)7?

A commonly used empirical scaling is that first observed by the MIT group on the
Alcator Tokamak experiment and now called "Alcator Scaling.” By this scaling

neTR(M™?s) = 6 x 10~ *'72a? (36)

Where the volume average density, i, is in #/m3 and the plasma radius, a, is in
m. For ignition,

(ReTp)arc =6 x 107*'n2a® = (eTE)ign (37)
Thus, . 20
6 x 107*'n2a® = 1.64 x 10°° = a* = © Xl'lﬁojl)l(omm)z =2.733  (38)
Therefore,

a1 =1.65m (39)
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Tokamak - Magnetic Field at Ignition

What is the required field on axis, B;(R)?
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Tokamak - Magnetic Field at Ignition

What is the required field on axis, B;(R)?

Recall, _ _
nkT 210 (20 kT
B = TR — Bt2 = % (40)
2p0
where we have used B, >> B, (B* = B} + B} = B}) and i = 2n...
Given kT = 10keV, i = 10°°m 2, and 8 = 5%,
2(4 1077)(2 x 1020 x 1 1. 1016
B2 = (4m x 1077)(2 x 10%° x 10 x 1.6 x 10 )=16.07 (41)

0.05

Therefore,
B{“!(R) =~ 4T (42)
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Tokamak - Fusion Power at Ignition

What is the resulting fusion power?
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Tokamak - Fusion Power at Ignition

What is the resulting fusion power?

We next calculate the fusion power density at ignition:

=2

Py = npiir<ov>E;f, = %< ov>Esf,
(1020)2 22 -13
= - (L1x107P)(A7.6 x 1.6 x 1071%)(2)
M
—Til
m

where we have used ip = iy = 7. /2 and negligible 71, and iy (Zeyy =1). The
total fusion power, PfT, is calculated from the volume and the power density. The
volume of the torus is given by V = ma? x 27R = 272a®R. Since R = 6.6m,

P{ =Py xV = Py x 2r°a°R = 1.55 x 27%(6.6)(1.65)> = 549MW  (43)

Note that P = 0.8P] = 439MW and P, = 0.2P} = 110MW.
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Tokamak - Wall Loadings

What are the wall loadings?
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Tokamak - Wall Loadings

What are the wall loadings?

First we define the neutron wall loading as L,, = %, where S is the area of the
torus surface, which is given by S = 27a x 2rR = 472 Ra. Therefore,

S = 4n? Ra = 472(6.6)(1.65) ~ 430m? (44)
Note V/S = 272 Ra? /4w Ra = a/2. Thus,

439 MW J
n=—r1 =10~ 45
430 m?2 m2s (45)

One neutron carries ~ 14.1MeV or 14.1 x 1.6 x 107 13J of energy. Thus, the wall
loading of 1MW /m? can also be expressed as

1092
_ w443 x 1017 #1 (46)
14.1 x 1.6 x 10713% m?2s

n
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