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Fusion Reactions

It was previously noted (lecture 1) that for the D − T fusion reaction to take
place a relative kinetic energy of ∼ 0.36MeV would be required to overcome
the Coulomb barrier.

However, experimental observations indicate that substantial fusion of D − T
takes place at energies well below the barrier height.

Classical mechanics cannot explain these observations and we must turn to
quantum mechanics to understand what is happening. Consider particles
approaching a rectangular potential barrier:

Figure 1: Potential barrier
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Fusion Reactions

According to classical mechanics the incident particles would be totally
reflected.

Figure 2: Potential barrier

However, according to quantum mechanics there can be partial reflection and
partial transmission of the incident beam. Using a graphical wave
representation:

Figure 3: Potential barrier
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Fusion Reactions

Calculation of the transmission probability is complicated and will not be
considered here.

It can be shown that the probability for transmission, PT , has the
dependencies,

PT = f(E,U, a)

Theory predicts significant transmission at energies well below barrier height.

The probability for a given fusion reaction to take place depends on:

− The probability for transmission (with formation of a compound nucleus)
− The probability for the given exit channel to occur.
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Fusion Reactions

a+ b → d+ e

Figure 4: Head-on nuclear fusion reaction (HSMK)
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Fusion Reactions

For example,
2
1D +3

1 T → (52He)∗

exhibits two exit channels:

Nuclear Elastic Scattering:

(52He)∗ →2
1 D +3

1 T

Fusion:
(52He)∗ →4

2 He+1
0 n

The combined probabilities for compound nucleus formation and de-excitation by
a given exit channel represents the reaction probability.
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Cross Sections

Historically reaction probabilities have been designated as reaction “cross
sections.”

We first give a functional definition for the cross section σ. Consider a test
particle of species 1 (e.g., D) moving in a medium of target particles of
species 2 (e.g., T ). For this case we make the following definition:

Reaction Probability per Test Particle per Unit Length Traveled in Medium =
P

l
≜ σn2

where σ is the cross section for reaction, n2 is the number density of the
medium, P is the probability per test particle, and l is the traveled length.

Note that σ has dimensions of l2 (e.g., cm2, m2) and n2 has dimensions of
#/l3 (e.g., #/cm3, #/m3), and σn2 has units of (#)/l or l−1, that is,
probability/unit length traveled by the test particle in the medium.
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Cross Sections

We now give a geometrical interpretation for the cross section.

Figure 5: Cross section geometrical interpretation
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Cross Sections

If each target particle has “cross sectional area,” σ, then

P = σ
n2l

3

l2
= σn2l

The probability per unit length traveled by the test particle in the medium is

P

l
= σn2,

just as we had before!

If we have n1 test particles per unit volume of the medium (in addition to n2

target particles per unit volume) and if the velocity of the test particles (with
respect to the target particles) is v, then the total path length traveled by the
n1 particles per sec per unit volume is n1v [#l3 × l

t =
l
l3t =

l
V t ].
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Cross Sections

Thus, the reaction rate “density,” the number of reactions between particles
1 and 2 per unit volume of medium per sec is

Reaction Rate Density =
P

V t
=

P

l
× l

V t
= (σn2)(n1v)

− σn2 = reaction probability per unit length traveled by one particle 1.
− n1v = total path length traveled by all particles 1 per unit volume per sec.

In the CGS system the reaction rate density, R, has the following units:

R = (σn2)(n1v) =

(
(cm2)

(
#

cm3

))((
#

cm3

)( cm
sec

))
=

(
#

cm

)( cm

cm3sec

)
=

#

cm3sec

Note that the quantity n1v is usually known as the “flux” ϕ [#l3 × l
t =

#
l2t ].
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Cross Sections

The determination of σ as a function of E is the work of nuclear physicists.
Experimental values of cross sections are needed. Theory only provides a
guide.

Sometimes we can get an order of magnitude estimate for a cross section by
use of the geometric argument σ ∼ πR2 (area of projected circle).

For example, the D − T reaction has RDT ∼ 4× 10−15m = 4× 10−13cm.
Therefore,

σ ∼ πR2 ≈ 0.5× 10−24cm2 (1)

This, of course, is NOT an accurate cross section value but indicates the
order of magnitude of nuclear cross sections, 10−24cm2. For this reason this
dimension has been given a name as follows

10−24cm2 ≡ 1barn
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Cross Sections

Consider first the fusion reaction

1
1H +1

1 H →2
1 D + β+ + ν (Q = 1.44MeV )

The cross section for this reaction is too small to be observed in the
laboratory. However, the cross section can be inferred from stellar processes
and can be estimated based on theory (∼ 10−9b).

The two reactions

1
1H +2

1 D → 3
2He+ γ (Q = 5.5MeV )

1
1H +3

1 T → 4
2He+ γ (Q = 19.8MeV )

have small, but observed cross sections (∼ 10−6b). These cross sections,
however, are too small to be of interest for fusion power.
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Cross Sections

Next consider the reactions

2
1D +2

1 D → 3
2He+1

0 n (Q = 3.3MeV )
2
1D +2

1 D → 3
1T +1

1 H (Q = 4.03MeV )
2
1D +3

1 T → 4
2He+1

0 n (Q = 17.6MeV )
2
1D +3

2 He → 4
2He+1

1 H (Q = 18.3MeV )

The cross section versus deuteron energy for these reactions is given in
Fig. 6. The following points are noted:

− σDT is by far the largest cross section
− Most of the σDT curve is significant well below 0.36MeV (360keV )

+ Remember that 0.36MeV (360keV ) is the approximate Coulomb barrier height

− σDT peaks at ∼ 110keV , where σDT ∼ 5b

+ Note that this is approximately an order of magnitude larger than the estimate
based on πR2 (See equation (1)).

Prof. Eugenio Schuster ME 362 - Nuclear Fusion and Radiation Fall 2024 13 / 40



Cross Sections

Figure 6: D −D, D − T and D −He3 cross sections.
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Fueling Strategy

As we shall see later in the course, under the proper conditions some of the
fusion reactions listed above have large enough cross sections to yield
reaction rates which are interesting for fusion power production.

We must first address a more fundamental question:

“Are there sufficient reserves of fuels for a fusion energy economy?”

Let us examine this question for a D − T based fusion power economy. What
are the “fuel” requirements?

− Deuterium is a stable isotope and can be recovered from water relatively easily

+ The Deuterium isotope has a 0.015 % abundance

− Tritium, on the other hand, is radioactive decaying by beta decay to 3He, i.e.,

3
1T

β−→ 3
2He, T1/2 ∼ 12.4 years

Note: We will learn more about the β radioactive decay later in the term.
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Fueling Strategy

Because of the short half-life (time taken for the population of a radioactive
isotope to fall to half its original value) of T , which is just 12.4 years, there
are not sufficient amounts of T in nature to sustain a D − T fusion power
economy. Therefore, T for D − T fusion power must be manmade by the
following strategy:

2
1D +3

1 T → 4
2He+1

0 n
1
0n+6

3 Li(7.5%) → 4
2He+3

1 T
1
0n+7

3 Li(92.5%) → 1
0n+4

2 He+3
1 T

As we shall show later, we can design a fusion reactor so that it will breed the
tritium it consumes by using the D − T generated neutrons and lithium.

Thus, the fuel requirement for T becomes a resource requirement for lithium.
Lithium and deuterium (water) resources are sufficient for 1000′s of years of
energy production via D − T fusion reactors.

A reactor based on the D −D fusion reaction would require only water!
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Nuclear Fusion Power Plant Based on DT Fueling Strategy

Neutron escapes to the walls.
Energy of the neutron can be captured to create electricity.
Neutron is also used to produce Tritium needed for fueling.
Energetic alpha particle remains in the plasma → ‘self-heating’ source.

Lithium 
compound 
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Other Energy Units

In examining energy resources it is useful to introduce a quantity of energy
called the terawatt–yr (TW − Y R) defined as

1TW − Y R ≡ 1012(J/sec)(365)(3600)(24)(sec/yr) ∼ 3.15× 1019J

Consider the following electricity consumption points:

1975 : US consumed ∼ 2.6TW − Y R
WORLD consumed ∼ 8.5TW − Y R

2025 : US consumption ∼ 4.5TW − Y R
WORLD consumption ∼ 27TW − Y R
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Other Energy Units

List of countries by electricity consumption

https://en.wikipedia.org/wiki/List of countries by electricity consumption

List of countries by total primary energy consumption

https://en.wikipedia.org/wiki/List of countries by total primary energy consumption and production

Energy in the United States

https://en.wikipedia.org/wiki/Energy in the United States

https://www.eia.gov/energyexplained/us-energy-facts/
https://www.eia.gov/energyexplained/us-energy-facts/data-and-statistics.php
https://www.eia.gov/energyexplained/us-energy-facts/images/consumption-by-source-and-sector.png
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Fusion Gain in Ideal Reactor

So far everything looks promising for a D − T fusion reactor, so let us try to
construct an “idealized” fusion reactor (we will learn that this is rather
different from a “practical” reactor but it will teach us important lessons).
Consider the following system:

Figure 7: Idealized fusion reactor.
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Fusion Gain in Ideal Reactor

The probability for a D − T fusion reaction per cm of D+ path length in the
target, P/l, is given by

P/l = σn2 = (5× 10−24cm2)︸ ︷︷ ︸
σ (from table)

0.2g/cm3

3g/mol
(6.02× 1023#/mol)︸ ︷︷ ︸

n2=nT

= 0.2
#

cm

NOTE:
− The mass of a proton is 1.00727647amu ≈ 1amu. The mass of a neutron is

1.008665amu ≈ 1amu. Since the electron mass is 1,836 times smaller than
the proton mass, the atom mass is approximately equal to the nucleus mass.

− The atom mass is approximately equal to A× amu = A× 1.66053907× 10−27kg.
− Since we have NA ≜ 6.02214076× 1023atoms/mol, the mass of a mol is

Mmol(
AX)≈A× 1.66053907× 10−27kg/atom× 6.02214076× 1023atoms/mol

≈A× 1.66053907× 10−24g/atom× 0.602214076× 1024atoms/mol

≈A× g/mol

Note that 1/1.66053907 ≈ 0.602214076 ⇒ 1.66053907× 0.602214076 ≈ 1!
− The molar mass of any atom is approximately equal to its mass number A (grams).
− Particle density [#Particles

V
]: n = ρ/Mmol(

AX)︸ ︷︷ ︸
#moles/V

×NA, where ρ = mass density.
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Fusion Gain in Ideal Reactor

The probability for a D − T fusion reaction per cm of D+ path length in the
target, P/l, is given by

P/l = σn2 = (5× 10−24cm2)︸ ︷︷ ︸
σ (from table)

0.2g/cm3

3g/mol
(6.02× 1023#/mol)︸ ︷︷ ︸

n2=nT

= 0.2
#

cm

On this basis we can easily make the target thick enough (> 5 cm) to achieve
a reaction probability approaching unity. Let us define an energy gain, Go, for
our system:

Go =
Fusion Energy/Incident D

Energy of Incident D
=

17.6MeV/D-T Fusion

0.1MeV/Incident D
= 176

THIS IS A VERY HIGH GAIN. THE “REACTOR” LOOKS VERY ATTRACTIVE.
IS THERE ANYTHING WRONG WITH THIS ANALYSIS?
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Competing Processes

We neglected the effect of “Coulomb scattering” (one possible exit channel
(see slide 6)) in our calculation of Go.

Coulomb or Rutherford scattering (elastic scattering between charged
particles) is the primary source of competition for fusion.

In Coulomb scattering the incident D+ looses energy and because the fusion
cross section decreases as the incident particle energy decreases, the
probability for fusion decreases.

If the Coulomb scattering cross section is large with respect to the fusion
cross section, the D+ will be “down-scattered” in energy before it can
engage in significant fusion reaction.
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Coulomb Scattering Cross Sections

The detailed derivation of the Coulomb scattering cross section can be found
in the textbook (Principles of Fusion Energy, Chapter 3). We shall use some
simpler arguments here to estimate σCS .
We would expect significant Coulomb scattering when two nuclei “feel” the
presence of the Coulomb potential relative to their mutual kinetic energy.
Consider the following schematic representation.

Figure 8: Coulomb potential.
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Coulomb Scattering Cross Sections

If the kinetic energy of particle 2 corresponds to point a, particle 2 will not
“feel” the Coulomb potential, that is, since Ta >> Ec(R) the Coulomb
potential is not strong enough to deflect (scatter) particle 2 significantly.

On the other hand, if the kinetic energy of particle 2 corresponds to point b,
Tb ≈ EC(R) and particle 2 will “feel” the Coulomb potential. In this case,
particle 2 will be deflected significantly.

Based on these arguments we can define the effective “range,” Reff , of the
Coulomb potential of particle 1 with respect to particle 2 by the following
condition:

E1,2(Reff ) = T1,2 ⇐⇒ Z1Z2

4πϵoReff
= T1,2

Taking Z1 = Z2 = 1.6× 10−19C and ϵo = 8.85× 10−12F/m,

Reff =
Z1Z2

4πϵoT
=

2.3× 10−28

T (J)
m =

1.44× 10−12

T (keV )
m (T = T1,2)
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Coulomb Scattering Cross Sections

If we employ a geometric interpretation for σCS :

σCS ∼ π

(
Reff

2

)2

=
π

4

(1.44× 10−12)2

T 2(keV )
m2 =

1.6× 104

T 2(keV )
barns

The above expression gives a very good estimate for large angle (significant
deflection) Coulomb scattering events when T is the “center of mass energy”
of the two particles:

T ≜
1

2
MoV

2; Mo ≜
M1M2

M1 +M2
(V ≡ relative velocity ⇒ V 2 = (V1 − V2)

2)

It must be emphasized that this expression is only an estimate.

lt does, however, give reasonable values for large angle scattering.

Moreover, it gives the correct energy dependence, σCS ∼ 1/T 2, for all
Coulomb scattering events (large and small angle).
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Energetic Deuterons on “Cold” Targets

Consider the following situation:

Figure 9: Energetic vs. cold deuteron/triton collision
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Energetic Deuterons on “Cold” Targets

For the deuteron on deuteron collision case

Mo ≜
MDMD

MD +MD
=

M2
D

2MD
=

MD

2

T ≜
1

2
MoV

2 =
1

2

MD

2
V 2
D =

1

2
TD (target at rest: V = VD)

Thus,

σ
D−D(cold)
CS =

1.6× 104

(TD

2 )2
b =

6.4× 104

T 2
D

b

For our idealized reactor, TD = 100keV ,

σ
D−D(cold)
CS =

6.4× 104

1002
b = 6.4b

Note that σD−D
f ≈ 0.03b at 100keV . Therefore, σCS/σf ≈ 200.
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Energetic Deuterons on “Cold” Targets

For the deuteron on triton collision case

Mo =
MDMT

MD +MT
=

MD(3MD/2)

MD + (3MD/2)
=

3M2
D/2

5MD/2
=

3MD

5

T ≡ 1

2
MoV

2 =
1

2

3MD

5
V 2
D =

3

5
TD (target at rest: V = VD)

Thus,

σ
D−T (cold)
CS =

1.6× 104

( 3TD

5 )2
b =

4.4× 104

T 2
D

b

For our idealized reactor, TD = 100keV ,

σ
D−T (cold)
CS =

4.4× 104

1002
b = 4.4b

Note that σD−T
f ≈ 5b at 100keV . Therefore, σCS/σf ≈ 1.
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Energetic Deuterons on “Cold” Targets

We will now estimate the energy gain of our idealized fusion reactor when
D − T Coulomb scattering is taken into account. Consider the following:

Figure 10: Incident D beam on T target
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Energetic Deuterons on “Cold” Targets

As the beam penetrates into the target, beam particles can engage in two
types of interactions with target particles:

(1) D − T fusion
(2) D − T Coulomb scattering

Note that if fusion takes place, a deuteron is removed from incident beam.

Figure 11: D − T fusion reaction
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Energetic Deuterons on “Cold” Targets

If scattering takes place, the scattered deuteron (with less energy!!!) is still
available for fusion or additional scattering.

Figure 12: D − T scattering
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Energetic Deuterons on “Cold” Targets

After Coulomb scattering, a beam particle has been degraded in energy and:
(1) the probability for fusion has decreased
(2) the probability for Coulomb scattering has increased

From Table (Experiments) From Formula (Estimation): σCS ∝ 1
E2

Figure 13: Fusion vs. scattering probabilities
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Energetic Deuterons on “Cold” Targets

The following table gives specific values for the DT reaction:

E(keV ) σf (b) σCS(b) σf/σCS

100 5 4.4 1.13
50 1.5 17.6 0.085
25 0.15 70.4 0.002

Thus, as the beam penetrates into the target, the beam energy is degraded
and the probability for fusion decreases dramatically.

Let us try to estimate the effect of beam degradation on the fusion energy
gain, G.
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Energetic Deuterons on “Cold” Targets

Figure 14: Beam degradation

Remember that in slide 10 we defined the reaction rate density as

R = (σn2) (n1v)︸ ︷︷ ︸
ϕ

where ϕ denotes the particle flux (this often is referred to as intensity I).

Therefore, the number of fusion reactions at Eo in dx about x is given by:

R(x)dx = I(x)︸︷︷︸
ϕ(x)

σf︸︷︷︸
σ

n︸︷︷︸
n2

dx [ϕ] = [I] = [nv] =
#

cm2s

We neglect fusion reactions at ED < EO
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Energetic Deuterons on “Cold” Targets

The total number of fusion reactions in the target per cm2s is∫ t

0

R(x)dx

Note that t denotes “thickness” (not “time”). See Fig. (14).

The fusion energy gain, G, is thus,

G =

∫ t

0
QR(x)dx

IoEo
=

Q
∫ t

0
R(x)dx

IoEo

Now, ∫ t

0

R(x)dx =

∫ t

0

I(x)σfndx = σfn

∫ t

0

I(x)dx

How does I(x) change as function of x? What is the expression for I(x)?
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Energetic Deuterons on “Cold” Targets

Figure 15: Beam degradation

To calculate I(x) consider the reduction in beam intensity, dI, in dx about x,

dI

dx
= −I(x)σfn− I(x)σCSn

dI = −I(x)σfndx− I(x)σCSndx

We neglect fusion reactions at ED < EO ⇒ Particles scattered just one time
are also “removed” from the beam (similarly to fused particles).
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Energetic Deuterons on “Cold” Targets

The Coulomb scattering term in this equation assumes that each scattering
event degrades the incident deuteron energy below the point at which it
could engage in a fusion reaction. A “better” assumption would be:

dI

dx
= −I(x)σfn− I(x)

σCS

s
n

dI = −I(x)σfndx− I(x)
σCS

s
ndx

where s is the number of Coulomb scattering collisions required for
“substantial” degradation of ED.

Here we neglect fusion reactions at ED < Ethreshold < EO with the
assumption that it takes s scatterings for the particle to see its energy ED go
below Ethreshold. Therefore, only particles scattered a minimum of s times
are “removed” from the beam (similarly to fused particles).
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Energetic Deuterons on “Cold” Targets

Thus,

dI

dx
= −I(x)n

(
σf +

σCS

s

)
⇐⇒ I(x) = −dI

dx

1

n
(
σf + σCS

s

)
Now, ∫ t

0

R(x)dx = σfn

∫ t

0

I(x)dx =
σfn

n
(
σf + σCS

s

) ∫ t

0

(
−dI

dx

)
dx

=
σf(

σf + σCS

s

) ∫ It

Io

(−dI)

lf we take the thickness t large enough to totally attenuate Io (i.e., It ≡ 0),∫ t

0

R(x)dx =
σfIo(

σf + σCS

s

)
Prof. Eugenio Schuster ME 362 - Nuclear Fusion and Radiation Fall 2024 39 / 40



Energetic Deuterons on “Cold” Targets

Thus,

G =
Q

σf Io

(σf+
σCS

s )

IoEo
=

Q

Eo

σf(
σf + σCS

s

)
Now we return to the D on T (cold) case and make the most pessimistic
assumption about s, i.e., s = 1. Then,

G =
5(

5 + 4.4
1

) 17.6
0.1

= 0.53Go ≈ 93

Thus, D − T scattering degrades G by only about a factor of 2 and the
resulting gain is still substantial.

WHAT IS STILL MISSING? WHAT MUST BE CONSIDERED IN ADDITION TO
D − T (COLD) COULOMB SCATTERING?
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