Nuclear Fusion and Radiation
Lecture 1 (Meetings 1 & 2)

Eugenio Schuster

schuster@lehigh.edu
Mechanical Engineering and Mechanics
Lehigh University
Consider a nuclear reaction of the form:

\[a + b \Rightarrow d + e \] \hspace{1cm} (1)

where \(a \) and \(b \) are the reactants, and \(d \) and \(e \) are the products. In such a reaction it is observed that the relativistic total energy of the system, \(E \), is conserved, where \(E \) is given by

\[E = T + M_o c^2 \] \hspace{1cm} (2)

\(T = \) kinetic energy
\(M_o = \) rest mass
\(c = \) speed of light in vacuum (299,792,458 m/s)
\(M_o c^2 = \) rest mass energy
Conservation of the relativistic total energy for the reaction can be written as:

\[(T + M_o c^2)_a + (T + M_o c^2)_b = (T + M_o c^2)_d + (T + M_o c^2)_e\] (3)

Rearranging this equation yields:

\[[(M_o a + M_o b) - (M_o d + M_o e)] c^2 = (T_d + T_e) - (T_a + T_b)\] (4)

or:

\[\left(\sum M_r - \sum M_p\right) c^2 = \sum T_p - \sum T_r\] (5)

where the subscripts \(r\) and \(p\) refer to reactants and products, respectively.
The Q value of a nuclear reaction is defined as:

$$Q \triangleq \left(\sum M_r - \sum M_p \right) c^2 = \sum T_p - \sum T_r \quad (6)$$

If $\sum M_r > \sum M_p$, $Q > 0$ and $\sum T_p > \sum T_r$, and the reaction is designated "exothermic", that is, there is energy release and this energy release is manifested in the excess kinetic energy of the products.

If $\sum M_r < \sum M_p$, $Q < 0$ and $\sum T_p < \sum T_r$, and the reaction is called "endothermic".

In summary

$$Q \triangleq (\Delta M) c^2 = \Delta T. \quad (7)$$
The characteristics of a nucleus are defined in terms of three parameters:

\[\frac{A}{Z}M \]

(8)

where,

- \(A \) is the mass number (number of protons + neutrons)
- \(M \) is the nuclear rest mass
- \(Z \) is the atomic number (number of protons)

The nuclear forces holding the nucleus together are often expressed as “binding” energy, \(B \), denoted by

\[B = [Zm_p + (A - Z)m_n - M]c^2 \]

(9)

where \(m_p \) is the proton mass and \(m_n \) is the neutron mass.
Thus, the nuclear rest mass, M, can be written as

$$M = Zm_p + (A - Z)m_n - \frac{B}{c^2}$$ \hspace{1cm} (10)$$

Again consider the reaction

$$a + b \Rightarrow d + e$$ \hspace{1cm} (11)$$

$$Q = [(M_a + M_b) - (M_d + M_e)]c^2$$ \hspace{1cm} (12)$$

Rewriting this equation in terms of the binding energy yields

$$\frac{Q}{c^2} = Z_a m_p + (A - Z)_a m_n - \frac{B_a}{c^2} + Z_b m_p + (A - Z)_b m_n - \frac{B_b}{c^2} - Z_d m_p - (A - Z)_d m_n + \frac{B_d}{c^2} - Z_e m_p - (A - Z)_e m_n + \frac{B_e}{c^2}$$
Nuclear Energy Release

It is observed in nuclear reactions that charge and number of nucleons are conserved. Thus,

\[\sum Z = \text{constant} \Rightarrow (Z_a + Z_b)m_p - (Z_d + Z_e)m_p \equiv 0 \]
\[\sum A = \text{constant} \Rightarrow [(A-Z)_a + (A-Z)_b]m_n - [(A-Z)_d + (A-Z)_e]m_n \equiv 0 \]

Therefore

\[\frac{Q}{c^2} = \frac{(\sum B_p - \sum B_r)}{c^2} \tag{13} \]
\[Q = \sum B_p - \sum B_r \tag{14} \]

Thus, \(Q \) is positive if \(\sum B_p > \sum B_r \), that is, if nucleons in the product nuclei are more tightly bound than nucleons in the reactant nuclei.
Since A (mass number) is conserved in nuclear reactions it is useful to talk about binding energy per nucleon, B/A, for a nucleus. In this context consider the equation

$$\frac{Q}{A} = \sum (B/A)_{p} - \sum (B/A)_{r}$$

Plots of B/A are helpful in identifying energetically favorable reactions. Consider Fig. 1. The following points are noted with regard to this figure:

- B/A is a maximum at $A \sim 60$
- B/A decreases as $A \to 200$
- B/A decreases for light nuclei.
Figure: Average binding energy B/A in Mev per nucleon as a function of mass number A
In discussing nuclear reactions it is convenient to define the \textit{amu} (atomic mass unit) which is based on $^{12}_6\text{C}$ (the atom) as having an atomic mass of exactly 12 \textit{amu}. On this basis the mass equivalence of the \textit{amu} is

$$1 \text{ amu} = 1.66 \times 10^{-27} \text{ kg}$$ \hspace{1cm} (16)

What is the energy equivalence of the \textit{amu}? If we could convert the mass associated with 1 \textit{amu} to kinetic energy release, then:

$$\Delta T = 1.66 \times 10^{-27} (kg)(3 \times 10^8 \text{ m/s})^2 = 1.49 \times 10^{-10} \text{ J}$$ \hspace{1cm} (17)

Note that this is not much energy in conventional terms: 1 jelly donut $\sim 10^6 \text{ J} \sim 1 \text{ MJ}$.
It is not very convenient to characterize the energy release of nuclear reactions in Joules (because the release is so small) and generally we use the electron volt \((eV)\) which is defined as follows.

When a singly charged particle (e.g. an electron) is accelerated through a potential difference of one volt it is said that the particle kinetic energy has increased by one electron volt \((1 \text{ eV})\). Since,

\[
\Delta T = qV
\]

Then,

\[
\Delta T(1eV) = (1.602 \times 10^{-19} C)(1V) = 1.602 \times 10^{-19} J
\]
Nuclear Energy Release

- Recasting the amu in terms of the electron volt yields

\[
\Delta T(1\text{amu}) = \frac{1.49 \times 10^{-10} J}{1.602 \times 10^{-19} J/eV} = 9.31 \times 10^8 eV = 931 MeV
\] (20)

- In nuclear reactions the energy release is generally well below 931 MeV. Thus, mass conversion to energy is generally less than 1 amu.

- Note that in chemical reactions the \(Q \) values are \(\sim 2 - 5 \) eV. Thus, the energy associated with bond formation and breakage (rearrangement of electronic structure) is \(\sim 10^6 \) less than the energy involved in nuclear rearrangements.
Fusion involves the coalescing of light nuclei to form heavier (more stable) nuclei.

Whereas only a few elements can undergo fission, there are many possible fusion reactions.

Consider first fusion of the lightest elements - hydrogen and its isotopes. Reactions of possible interest include:

\[
\begin{align*}
\frac{1}{1}H + \frac{1}{1}H & \rightarrow \frac{2}{1}D + \frac{0}{1}e \\
\frac{1}{1}H + \frac{2}{1}D & \rightarrow \frac{3}{2}He + \frac{0}{0}\gamma \\
\frac{1}{1}H + \frac{3}{1}T & \rightarrow \frac{4}{2}He + \frac{0}{0}\gamma \\
\frac{2}{1}D + \frac{2}{1}D & \rightarrow \frac{3}{2}He + \frac{1}{0}n \\
\frac{2}{1}D + \frac{3}{1}T & \rightarrow \frac{4}{2}He + \frac{1}{0}n
\end{align*}
\]

Exercise: Calculate the \(Q \) value for the \(DT \) fusion reaction.
Fusion Reactions

The Q value for the DT reaction is $17.6\,MeV$. Consider the amount of energy release per gram of tritium consumed:

$$E(T) = \frac{6.02 \times 10^{23}(\#/mole)}{3\,gr/mole} \times 17.6\,MeV = 2.01 \times 10^{23} \times 17.6\,\frac{MeV}{gr}$$

Converting to Joules ($1\,MeV = 1.6 \times 10^{-13}\,J$), we obtain

$$E(T) = 2.01 \times 10^{23} \times 17.6 \times 1.6 \times 10^{-13}\,\frac{J}{gr} = 5.65 \times 10^{11}\,\frac{J}{gr}$$

We now define an energy unit called the Megawatt-day (MWd) as follows:

$$1\,MWd = 10^6(\,J/sec) \times 3600 \times 24(\,sec/d) = 8.64 \times 10^{10}\,J \quad (21)$$
Fusion Reactions

Thus, the energy yield from a DT reaction is

$$E = \frac{5.65 \times 10^{10} \text{(J/gm)}}{8.64 \times 10^{10} \text{(J/MWd)}} = 6.54 \frac{\text{MWd}}{\text{gr}}$$

Note that one fission event yields $\sim 200\text{MeV}$ or about ten times as much energy as a DT fusion event. However, the result is different when compared on a per gram basis.

$$E(U^{235}) = \frac{6.02 \times 10^{23} \text{(#/mole)}}{235 \text{gr/mole}} \times 200\text{MeV} \times 1.6 \times 10^{-13} \frac{\text{J}}{\text{MeV}}$$

$$= 8.2 \times 10^{10} \frac{\text{J}}{\text{gr}}$$

$$E(U^{235}) = \frac{8.2 \times 10^{10} \text{(J/gr)}}{8.64 \times 10^{10} \text{(J/MWd)}} = 0.95 \frac{\text{MWd}}{\text{gr}}$$
Based on the previous calculations, it is obvious that we can get substantial energy release from a few grams of D and T. We must now turn to the probabilities for fusion.

Consider schematically the mechanics of a two particle nuclear reaction.
The electrostatic potential energy between two point charges, $E(R)$, is given by

$$E(R) = \frac{Z_1 Z_2}{4\pi \epsilon_o R}$$ \hspace{1cm} (22)

where Z is the charge in coulombs (C), R is the separation in meters (m), and $\epsilon_o = 8.85 \times 10^{-12} F/m$ is the permittivity of free space. NOTE: Farad, $F = C^2/J$.

Let us estimate the barrier height, $E(R_o)$ for D on T. The nuclear separation at contact is approximately $R_o = 4 \times 10^{-15} m$.

Fusion Reactions

\[E(R_o) = \frac{(1.6 \times 10^{-19})^2 (C^2)}{4 \times \pi \times 8.85 \times 10^{-12} (C^2/J/m) \times 4 \times 10^{-15} (m)} \]

\[= 5.76 \times 10^{-14} J \]

Noting that \(1 MeV = 1.6 \times 10^{-13} J\),

\[E(R_o) = \frac{5.76 \times 10^{-14} J}{1.6 \times 10^{-13} J/MeV} \sim 0.36 MeV \]
Thus, if the mechanics of fusion relied purely on classical effects, the mutual kinetic energy of the D on T would have to be $\sim 0.36\,MeV$ before any fusion could take place, i.e., the barrier height would have to be overcome before any reaction would take place.

However, if we examine the experimentally observed probability for reaction as a function of energy, the following results emerge.
Fusion Reactions

Thus, the experimental evidence is that there is significant probability for fusion at energies well below the coulomb barrier height.

What is happening?