

Nuclear Fusion and Radiation

Midterm 1 - Content (Meetings 1-12)

Eugenio Schuster

schuster@lehigh.edu
Mechanical Engineering and Mechanics
Lehigh University

Lecture 1

- Relativistic energy conservation in nuclear reactions
- Computation of energy release Q
 - Mass
 - Binding energy
- Unit definition (amu (mass), eV (energy))
- Computation of $Q = 17.6$ MeV for DT fusion reaction
- Fusion vs. Fission based on B/A
- Fusion vs. Fission based on energy per gram of fuel
- Discussion on mismatch between estimated electrostatic potential energy and energy for maximum probability of DT fusion reaction

Lecture 2

- Modern physics concepts
- Theory of special relativity
 - Lorentz transformation
 - Proper vs. apparent time, length, and mass.
 - Relativistic energy and momentum
- Wave-particle duality
 - Photoelectric Effect
 - Compton Scattering
 - Electron Scattering
- Quantum mechanics
- Explanation on mismatch between estimated electrostatic potential energy and energy for maximum probability of DT fusion reaction

Lecture 3

- Fuel cycle for DT fusion reaction
- Coulomb scattering as competing process for fusion
- Important definitions
 - Cross section
 - Probability of reaction per unit length traveled
 - Reaction rate
- Fusion gain in ideal fusion reactor
 - Accelerator: energetic deuterium beam on cold tritium target
 - Gain too high when Coulomb scattering neglected
 - Approximate formula for scattering cross section
 - Gain still too high when $D - T^{cold}$ scattering considered even for $s = 1$
(s is the number of Coulomb scattering collisions required for the deuteron energy to be below fusion requirements)

Lecture 4

- Fusion gain in ideal (accelerator: energetic deuterium beam on cold tritium target) fusion reactor
 - Estimated $s \neq 1$ for $D-T^{cold}$ scattering. Higher gain.
 - Estimation of s for $D - e^{cold}$ scattering. Gain now drops below 1!!! What can we do?
 - Heating up the tritium target seems to produce reactor-grade gains.
- We abandon the ideal reactor concept → PLASMA
- Maxwell-Boltzmann distribution. “Maxwellian” averages.
 - $\langle E \rangle, \langle v \rangle, \langle \sigma v \rangle \rightarrow$ Reaction Rate
- Important definitions
 - Reaction mean life, Reaction mean free path
 - Power density (DT), pressure density, energy density

Lecture 5

- Power balance

- $P_{aux} + P_\alpha = P_L$ (conduction+diffusion) + P_b (radiation)
 - $P_\alpha = n_D n_T \langle \sigma v \rangle E_\alpha$
 - $P_L = (3nkT/2)/\tau_E, P_b = CT_e^{1/2} n_e^2 Z_{eff}$

- Charge neutrality: $n_e = n_p$

- Total density: $n = n_e + n_i = n_e + \sum_j n_{ion}^j$

- Common fueling assumption: $n_D = n_T$

- Effective atomic number: $Z_{eff} = \sum_j n_{ion}^j \langle \bar{Z}_j \rangle^2 / n_e$

- Important metrics

- Power gain $Q = P_f / P_{aux}$ (DT plasmas: $P_f = 5P_\alpha$)
 - Lawson criterion for ignition $n_e \tau_E$

- Particle balance