

ME 343 – Control Systems

Lecture 37

November 18, 2009

Solution of State Space Equation

Solution by the Laplace Transform:

We consider the linear, time-invariant system

$$\begin{aligned}\dot{x} &= Ax + Bu, \\ y &= Cx + Du.\end{aligned}$$

We Laplace transform the state equation to obtain

$$sX(s) - x(0) = AX(s) + BU(s) \quad L[\dot{x}(t)] = sX(s) - x(0)$$

$$X(s) = L[x(t)], \quad U(s) = L[u(t)]$$

And we solve to obtain

$$X(s) = (sI - A)^{-1}x(0) + (sI - A)^{-1}BU(s)$$

Solution of State Space Equation

$$X(s) = (sI - A)^{-1} x(0) + (sI - A)^{-1} B U(s)$$

We inverse Laplace transform to obtain

$$x(t) = e^{At} x_0 + \int_0^t e^{A(t-\tau)} B u(\tau) d\tau$$

where we have used that

$$\begin{aligned} L[e^{At}] &= (sI - A)^{-1} \\ L\left[\int_0^t f(t-\tau)g(\tau)d\tau\right] &= f(s)g(s) \end{aligned}$$

State Transformation

We consider the linear, time-invariant system

$$\begin{aligned} \dot{x} &= Ax + Bu, \\ y &= Cx + Du. \end{aligned}$$

We define the state transformation

$$x(t) = Tz(t) \Leftrightarrow T^{-1}x(t) = z(t)$$

Then we can write

$$\begin{aligned} T\dot{z} &= ATz + Bu \Rightarrow \dot{z} = T^{-1}ATz + T^{-1}Bu \\ y &= CTz + Du. \end{aligned}$$

to obtain

$$\begin{aligned} \dot{z} &= \tilde{A}z + \tilde{B}u \\ y &= \tilde{C}z + \tilde{D}u \end{aligned} \quad \boxed{\tilde{A} = T^{-1}AT, \tilde{B} = T^{-1}B, \tilde{C} = CT, \tilde{D} = D}$$

State Transformation

The transfer function (input-output relationship) does NOT depend on state choice

$$\frac{Y(s)}{U(s)} = \tilde{C}(sI - \tilde{A})^{-1} \tilde{B} + \tilde{D} = C(sI - A)^{-1} B + D$$

Proof:

Controllability and Observability

Let us assume the following modal form:

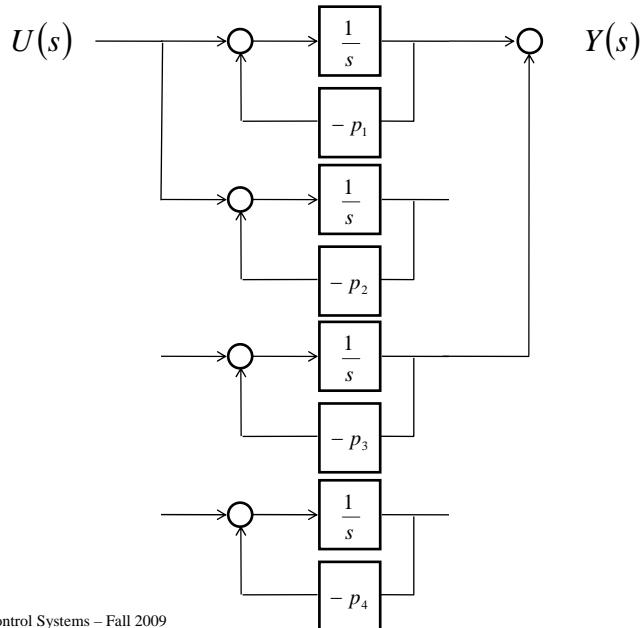
$$\begin{aligned}\dot{x} &= Ax + Bu, \\ y &= Cx + Du.\end{aligned}$$

$$A = \begin{bmatrix} -p_1 & 0 & 0 & 0 \\ 0 & -p_2 & 0 & 0 \\ 0 & 0 & -p_3 & 0 \\ 0 & 0 & 0 & -p_4 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, C = \begin{bmatrix} k_1 & 0 & k_3 & 0 \end{bmatrix}, D = 0$$

$$Y(s) = \frac{k_1}{s + p_1} U(s) + \frac{0}{s + p_2} U(s) + \frac{k_3}{s + p_3} 0 + \frac{0}{s + p_4} 0$$

Only the controllable and observable mode appears in the transfer function

Controllability and Observability



Controllability

Problem Definition: “A system is said to be controllable if and only if it is possible, by means of the input, to transfer the system from any initial state $x(0)$ to any other state $x(t)$ in a finite time $t \geq 0$.”

Theorem: “A system is controllable if and only if the matrix

$$\bar{C} = [B \quad AB \quad A^2B \quad \dots \quad A^{n-1}B] \quad \text{Controllability Matrix}$$

is full-rank.”

Observability

Problem Definition: "An unforced system is said to be observable if and only if it is possible to determine any (arbitrary initial) state $x(0)$ by using only a finite record, $y(\tau)$ for $0 \leq \tau \leq T$, of the output"

Theorem: "A system is controllable if and only if the matrix

$$\bar{O} = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix} \quad \text{Observability Matrix}$$

is full-rank."

Controllability and Observability

Examples: