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Root Locus
Controller Plant
R(5) +pm E(5) \C(S) U(s) G(:) Y(s)
H(s)
\
Sensor

Y6) | COIGE)  C)GLs)
R(s) 1+C(s)G(s)H(s) 1+ KL(s)

C(s)=KD(s)=

Writing the loop gain as KL(s) we are interested in tracking
the closed-loop poles as “gain” K varies
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Root Locus

Characteristic Equation:

1+ KL(s)=0

The roots (zeros) of the characteristic equation are the
closed-loop poles of the feedback system!!!

The closed-loop poles are a function of the “gain” K

Writing the loop gain as

b(s) s" +bs" "+ +b, s+b,
a(s) s"+as"t+-+a, s+a,

L(s) =
The closed loop poles are given indistinctly by the solution of:

1+ KL(s)=0, 1+K2) 0 a(s)+Kb(s)=0, L(s)=——
a(s) K
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Root Locus

RL = zeros{l+ KL(s)} = roots{den(L) + Knum(L)}

when K varies from O to « (positive Root Locus) or
from O to -« (negative Root Locus)

K>0:L(s)= 21 PN ‘L(S)\ :1](" Magnitude condition

ZL(s)=180° Phase condition

K <0:L(s) _ 1 PN L(s)|= —]1{ Magnitude condition

ZL(s)=0" Phase condition
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Phase and Magnitude of a Transfer Function

b s"+b, s ’”‘l+-~~+bls+b0

G(s)=

s"+a, St as +ag

G(s) =K (s—z)(s—2,)(s—2z,)
(s—p)(s=py)---(s—p,)

The factors K, (s-z;) and (s-p,) are complex numbers:

'

(s—z,)=rje j=1l..m

(S_pk):,,kpeiﬁﬁf’ k=1--p

= \K e”’jk
z l¢l z l¢2 . z l¢m
G(s)= \K\e”’j he 1€ n®
l¢1p ¢2 p gy
. I" e
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Phase and Magnitude of a Transfer Function

ig Zl¢2. z idy,
ig" rle rne re

G(s)= \K W
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z(¢l’7+¢”+ +gf )

zZ_Z z
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p
el -rle

\K\irl 2 pef[¢’<+(¢f+¢f+~~+¢éH¢f’+¢z”+~--+¢f)]
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n

Now it is easy to give the phase and magnitude
of the transfer function:

G(s)= ‘K‘M

Y
£G(s)= " 4+ 5+t )-8+ 4 49
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Root Locus by Phase Condition

Example: R(s) + @ E(s) Uls) s+1 Y(s)
P K s(s+ 5)(s2 +4s+ 8)
= Pole-Zero Map
- | o s+1
S : 1 L(s)=
i i | (%) s(s+5)(s* +4s+8)
s+1

 s(s+5)s+2+2i)(s +2-2i)

1_ N

Imag Axis

s, =—1+3i

2F : 4
al ] belongs to the locus?
s I
5 h f f h h h i h

7 - 5 -4 -3 -2 -1 i 1 2

Real Axis
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Root Locus by Phase Condition

5 L L L L L L H L
-7 £ -8 -4 -3 -2 -1 ul 1 2

90" -[108.43' +36.87" + 45 +78.70° |~ -180° =5 =-1+3i belongs to the locus!

Note: Check code rlocus_phasecondition.m
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Root Locus by Phase Condition

1 I~ s, =-1+3i

Imag Axis

7 Ao 5 -4 -3 -2 -1 i 1 2
Real Axis

We need a systematic approach to plot the closed-loop poles
as function of the gain K - ROOT LOCUS
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Root Locus

RL = zeros{l+ KL(s)} = roots{den(L) + Knum(L)}

when K varies from 0 to « (positive Root Locus) or
from O to -« (negative Root Locus)

1+ KL(s)=0< L(s) = —[Jé < als)+ Kb(s)=0
Basic Properties:

e Number of branches = number of open-loop poles
e RL begins at open-loop poles

K=0=a(s)=0

* RL ends at open-loop zeros or asymptotes
b(s)=0
K=w0=L(s)=0= (5)
s —> o (n—m>0)
e RL symmetrical about Re-axis
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Root Locus

Rule 1: The n branches of the locus start at the poles of L(s)
and m of these branches end on the zeros of L(s).

n: order of the denominator of L(s)

m: order of the numerator of L(s)

Rule 2: The locus is on the real axis to the left of and odd
number of poles and zeros.

In other words, an interval on the real axis belongs to the
root locus if the total number of poles and zeros to the right
is odd.

This rule comes from the phase condition!!!
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Root Locus

Rule 3: As K—w, m of the closed-loop poles approach the
open-loop zeros, and r-m of them approach n-m asymptotes
with angles

4=@1+)—"— 1=01..,n-m-1
n—m
and centered at

_ oles— ) zeros
a:bl alzzp Z ., 1=01,...n-m-1
n—m n—m
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Root Locus

Rule 4: The locus crosses the jw axis (looses stability) where
the Routh criterion shows a transition from roots in the left
half-plane to roots in the right-half plane.

15 T T T T T T

Example:

s+5
s(s?+4s+5)

G(s)=

Imag Axis

K =20,5 =15
A0F
15 . ‘ . : : : '
£ -5 -4 -3 -2 -1 0 1 2
Real Axis
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Root Locus

Design dangers revealed by the Root Locus:

= High relative degree: For n-m>3 we have closed loop
instability due to asymptotes.

s+1
5*+35° +75° +65+4

G(s)=

< Nonminimum phase zeros: They attract closed loop poles
into the RHP

s—1

G(s)=———
() sZ+s+1

Note: Check code rootlocus.m
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Root Locus

Viete’s formula:

When the relative degree n-m>2, the sum of the closed loop
poles is constant

a, =—Y closed loop poles

_b(s)  s¢bs" 4+ b, s +b,

n

a(s) " +fas"+ta, s+a,

L(s)
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Root Locus- Magnitude and Phase Conditions

RL = zeros{l+ KL(s)} = roots{den(L) + Knum(L)}

when K varies from 0 to « (positive Root Locus) or
from O to -« (negative Root Locus)

BTy T 6l s v Mot g vsat )|
},i[’rzp e rP

n

Ls)=K, (s—z)(s—2)--(s—2,) :‘Kp‘
(s—p)(s—py)--(s—p,)

nr,r., 1
L =K 172 m_ _ =
K>O:L(s):—11<<:> ) ‘ ”‘rlprzl’...rn/’ K

ZL(s):¢K,,+(¢lz+¢22+...+¢;)_(¢1ﬁ +¢2p+.”+ ,{7)21800

z Z'.. z l
L(s) =[K, [~
K<0:L(S)=—Il<c> | ‘ p‘rlprzl'“rnl K

LL(S):¢K" +(¢f+¢;+---+ ;)—(¢l”+¢{+---+¢j’):0°
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Root Locus

Selecting K for desired closed loop poles on Root Locus:

If s, belongs to the root locus, it must satisfies the
characteristic equation for some value of K

L) =

Then we can obtain K as

L(s,)
K=——
IL(s,)]

ME 343 — Control Systems — Fall 2009 359

Root Locus — Phase lead compensator

Pure derivative control is not normally practical because of the
amplification of the noise due to the differentiation and must
be approximated:

stz
D(s) = . p>z Phase lead
s+p COMPENSATOR

When we study frequency response we will understand why
we call “Phase Lead” to this compensator.

s+z 1
s+p(s+1)s+5)

L(s)=D(s)G(s) = p>z

How do we choose z and p to place the closed loop pole
at s,=-7+i5?
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Root Locus — Phase lead compensator

Example: L(s) = D(s)G(s) = :;m

p>z
Pole-Zero Map

Phase lead
COMPENSATOR
.:(%
£ Let us choose p=20 (\‘¢f ?
21
At
5 - - s s i
-25 =20 -15 -10 -1 0 5
Real Axis
2L() =" (g4 g5+ + 4)- (0 + 90+ 4 g7) =180
¢ =180 +140.19° +111.80° + 21.04° = 453.03° =93.03' = z =—6.735
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Root Locus — Phase lead compensator
Example: L(s)=D(s)G(s) = s+6.735 L

s+20 (s+1)(s+5)

20— : : : , \ Phase lead

COMPENSATOR
151
10} 1 s, =—1+i5
L — ]
‘ | K =117
£, ey _
E
5l
Aok
15+
20— ' : : ‘ :
=20 -15 -10 -5 ] &
Real Axis
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Root Locus — Phase lead compensator

Selecting z and p is a trial an error procedure. In general:

e The zero is placed in the neighborhood of the closed-
loop natural frequency, as determined by rise-time or

settling time requirements.
e The poles is placed at a distance 5 to 20 times the

value of the zero location. The pole is fast enough to
avoid modifying the dominant pole behavior.

The exact position of the pole p is a compromise between:

= Noise suppression (we want a small value for p)
= Compensation effectiveness (we want large value for p)
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Root Locus — Phase lag compensator

s+6.735 1
E le: L =D(s)G(s) =
xample ()= DG == o0 5415 +5)
s+6.735 1 6735102

K =lmL(s)=limD(s)G(s) =lim
p =M L(s) =lin D(s)G(s) = lin s+20 (s+1)s+5)

What can we do to increase K,? Suppose we want K =10.

s+zs+6.735 1
L(s)=D(s)G(s) = :
()= D()G(s) s+p s+20 (s+1)s+5)

p<z

Phase lag
COMPENSATOR

We choose: z L x10° =148.48

» 6.735
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Root Locus — Phase lag compensator

s+0.14848 5 +6.735 1

s+20 (s+1)s+5)

Example:  L(s)=D(s)G(s) =
s+0.001
20 T T T
18+ : 1
10F ; 1
—
B |
5l
Aok
sk
20l : : : : .
=20 -18 -10 sl 0 5

s, =—6.94+i5.03
K =1831
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Real Axis
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Root Locus — Phase lag compensator

Selecting z and p is a trial an error procedure. In general:

= The ratio zero/pole is chosen based on the error
constant specification.
= We pick z and p small to avoid affecting the dominant
dynamic of the system (to avoid modifying the part of
the locus representing the dominant dynamics)

= Slow transient due to the small p is almost cancelled
by an small z. The ratio zero/pole cannot be very big.

The exact position of z and p is a compromise between:

e Steady state error (we want a large value for z/p)
* The transient response (we want the pole p placed far
from the origin)
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Root Locus - Compensators

S+z

Phase lead compensator: D(s) = , zZ<p
s+p
S+z

Phase lag compensator: D(s) = , Z>Pp
s+p

We will see why we call “phase lead” and “phase lag” to
these compensators when we study frequency response
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Frequency Response

* We now know how to analyze and design systems via s-domain
methods which yield dynamical information

» The responses are described by the exponential modes

» We next will look at describing system performance via frequency
response methods

 This guides us in specifying the system pole and zero positions
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Sinusoidal Steady-State Response
Consider a stable transfer function with a
sinusoidal input:

u(t) = Acos(ert) < U(s) =1

S+’

The Laplace Transform of the response has poles
e Where the natural system modes lie

—These are in the open left half plane Re(s)<O0

= At the input modes S=+j® and S=-j®

(s-2z)(s—2,)(s-2,) Aw
Y(s)=G(s)U(s)=K m
) =G =K = p) (- p) 7+ )

Only the response due to the poles on the imaginary
axis remains after a sufficiently long time

This is the sinusoidal steady-state response
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Sinusoidal Steady-State Response

Input  u(¢) = Acos(wt + ¢) = Acoswt Sin ¢ — ASin wt COS ¢

e Transform  U(s)=-A4cos¢— > 5+ Asin ¢%
s+t s +tow
* Response Transform
k K k k k
Y(s)=G(s)U(s) = 42 4+ —X
S—jw s+tjo s—p S—p, S—py
» Response Signal forced\rgsponse natural response
y(t) =ke! +k eI 1 jgePt +kpeP? ..t kel N
forced response natural response
 Sinusoidal Steady State Response yoo
. * 1
ySS(t):ke]wt+ke Jot 0
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Sinusoidal Steady-State Response

» Calculating the SSS response to u(t) = Acos(ot +¢)
* Residue calculation

k= lim[(s — j)Y(s)]= lim[(s - jw)G(s)U(s)]

$COS¢—wsing } _ G(jw)A{ja)cow—a)sinﬂ
(s—jo)(s+ jo) 2jo

= Iim{G(s)(s—ja))A
S j o
cNL o _ L e N i sGUa)
:AG(]a))Ee’ =§A\G(Ja))\e’ /
« Signal calculation

yss(t):L'l{k+ K }

sS—jo s+jo

= ‘k‘ej“ej“ + ‘k‘e’jﬂ(e’j’”’
= 2k|cos(wr + ZK)
v, (t) = AG(jw)|cos(at + ¢+ LG(jw))
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Sinusoidal Steady-State Response

« Responseto  u(7)=Acos(wi+¢)
is v, =|G(jw) Acos(at + ¢+ LG (jw))

— Output frequency = input frequency
— Output amplitude = input amplitude x |G(jw)|
— QOutput phase = input phase + Z G(jw)

» The Frequency Response of the transfer function G(s) is given
by its evaluation as a function of a complex variable at s=j@
» We speak of the amplitude response and of the phase response

» Bode’s relations of analytic function theory
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Frequency Response

u(r) = Acos(wt +¢) — G(s) — »,, =|G(jw) Acos(wt + ¢+ LG(jw))
\ Stable Transfer Function

- After a transient, the output settles to a sinusoid with an
amplitude magnified by ‘G(ja))‘ and phase shifted by ZG(jw).

= Since all signals can be represented by sinusoids (Fourier
series and transform), the quantities |G(j®)| and ZG(jw) are
extremely important.

- Bode developed methods for quickly finding |G(j®)| and £G(jw)
for a given G(s) and for using them in control design.
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Bode Diagrams

Gy k B2 =2)-3,)
(s—p)(s—py)--(s—p,)

|

Gs) = [K| L2 lo* sl bt H ettt )

PP ... P
’?I.FZ rn

The magnitude and phase of G(s) when s=jo is given by:

Nonlinear in the magnitudes
/ g

m

PP ...+ P
r1r2 rn

zZ_.Z z
’/i]/'z XEY S

G(jo) =|K]

LG(j0) =" + (g + g5 +4 1) (@ + 91 4+ 07)
T Linear in the phases
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Bode Diagrams
Why do we express ‘G(]a))\ in decibels?

G(jw),, =20log|G(jw)

z_ .z z
ri.r2 '“rm
)4

(o) =IK =[G(ja),, =7

Pyl ...
ol

By properties of the logarithm we can write:
2010g/G (s)| = 201og|K]| + (20l0g 5* +20log r: +---+20log ) (20log ;" +20l0gy’ +---+20log " )
The magnitude and phase of G(s) when s=jo is given by:

/ Linear in the magnitudes (dB)

)

G(5) =l + 5], + 73], 44 ], )

£G() =g  + (5 + 5+t 40)- 0 4 g 41 47)
T Linear in the phases
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+rzp‘ +-tr?
dB

n

Bode Diagrams

Decade: Any frequency range whose end points have a 10:1 ratio

A cutoff frequency occurs when the gain is reduced from its
maximum passband value by a factor 1/4/2 :

3dB

MAX

ZOIOQ[\}ETMAXJ =20log|7],,,, —20log~/2 ~ 20log|7|

Bandwith: frequency range spanned by the gain passband
Let’s have a look at our example:
w=0 ‘T(ja))‘ =1
T(jw)=—F—m———=>
TG ) wLJZ {a)=R/L T(jo)|=1/2
+ -

This is a low-pass filter!!! Passband gain=1, Cutoff frequency=R/L
The Bandwith is R/L!
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General Transfer Function (Bode Diagrams)

G<jw>—Ko<jw>'"<jm+1>"{[;j’j2+zgfj’+1}q

The magnitude (dB) (phase) is the sum of the magnitudes (dB)
(phases) of each one of the terms. We learn how to plot each term,
we learn how to plot the whole magnitude and phase Bode Plot.

Classes of terms:

1-  G(jw)=K,
= G(jm)=(jo)
3 G(jw)=(jor+1)'
q
& ( + 24 }
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General Transfer Function: DC gain

G(jo)=K,
Magnitude and Phase: ‘G(]’a))‘d}} =
. 0 ifK,>0
i G( j a)) =1, —r
G(s)=-10 tr MK, <
40 r T 200
- 180
160
’\30 140
825 120
(] k)
S20 ‘100
§15 g 80
. 60
40
5 20
100'1 10° 10* 10° 100" 10° 10' 10°
Frequency (rad/sec) Frequency (rad/sec)
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General Transfer Function: Poles/zeros at origin
G(jw)=(jo)"

Magnitude and Phase: ‘G(ja))‘dB =m-20logw

. T
me1Ge)-L  ZG(w)=m’
S

20 . ; 0
10 ‘G(l) =0 -20
/’ dB
& 0 . 40
E o
g s
S0 o -60
= @
g [
=20 dB / -80
m-20—
-30 dec 100
-40 : : -120
10" 10° 10' 10° 10" 10° 10' 10°
Frequency (rad/sec) Frequency (rad/sec)
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General Transfer Function: Real poles/zeros
Gljw)=(jor+1)
Magnitude and Phase:

G(jw), =n .10log(e?z? +1)
/G(jw)=ntan™(wr)

Asymptotic behavior:

‘G(ja))‘dB w<<llt 0 ZG(]G))—)OO

w<<llt

‘G(ja))‘dB—)n‘T‘dB+n-20loga) LG(jo)————n-90°

w>>1lt w>>1l7
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General Transfer Function: Real poles/zeros

=
[ -]

.
g o

n-3dB

Magnitude (dB)
O NN e s
o [$)] o (6] o

&
&

dB

n-20—— |
dec

A
S

N 10° 10"

[y
(=)

Frequency (rad/sec)
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10

3

n=-1,7=1/10
Gls)=—1
]
10

G(j0)| , =0dB

] ‘G(jl/r)‘dB =n-3dB

‘G(oo)‘dB =sgn(n)wdB

381

General Transfer Function: Real poles/zeros

Phase (deg)
© © N & a A b N & —
©O © o © © O © © © o o

-100 *
-1 0 10t
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0
Frequency (rad/sec)

10

n=-1,7=1/10

ZG(j0)=0°
ZG(jllt)=n-45
ZG(jo)=n-90°
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General Transfer Function: Complex poles/zeros

G(jw)= M’;Jz + 24“];‘) +1]q

n n

Magnitude and Phase:

Glio) =4 '10'09{(1232 ' (255”

n n

4 2lwl o
/G(jo)=g-tan™ %
1-0° o]
Asymptotic behavior:
Gj@)|y —5es 0 26(jo)—— 0

G(jo) y————2q 0,

o>>w,

ME 343 - Control Systems — Fall 2009 383

General Transfer Function: Complex poles/zeros

20 - g=-lw,=14=0.05
0 q- ‘24’ dB

20} dB 1 G(S): 2 '
~ q-40— s°+0.1s+1
g e dec
S g0t
% 60 |
s

80} \G(jO)\dB =0dB

ool |GG, =q-BdB+<],)

| | G(j), = San(g)oedB
-1220'1 10° 10" 10 10°
Frequency (rad/sec)
. . o,
Gl =i6(j@)|, = a-eN1-¢7),y @ =0, =

1-¢?
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Phase (deg)

General Transfer Function: Complex poles/zeros

g=-1lw =1¢=005

20

; _
1

20 | 1 —
0| 1 | W)= o
-60 | ]
-80 | 1
100 e ] £G(j0)=0
120) q-90 ! 2G(T) =q-90°

0T L 1 ZG(joo) =g -180°
-160 1

-180

-200 = 0 "l 2

10 10 10 10 10
Frequency (rad/sec)
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Frequency Response: Poles/Zeros in the RHP

- Same \G(ja))‘ :
= The effect on ZG(jw) is opposite than the stable case.

An unstable pole behaves like a stable zero
An “unstable” zero behaves like a “stable” pole

Example: G(S) = >
5 —

This frequency response cannot be found experimentally
but can be computed and used for control design.
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Neutral Stability
U(s) + KG(S Y(s)

1

()= s(s +1)2

Root Locus

Root locus condition:

: \ KG(s) =1, £G(s)=-180’

: > At points of neutral stability
RL condition hold for s=jo
| KG(w)|=1, Z£G(jw)=-180°
_ ‘ . . . Stability: At £G(jw)=-180°
-2 15 1 05 i 05

1
Feal e KG(jw) <1 If TK leads to instability
KG(jw)|>1 If K leads to instability

Imag Axis
=]

05F
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Stability Margins

The GAIN MARGIN (GM) is the factor by which the gain
can be raised before instability results.

GM|<1(GM|,, <0)= UNSTABLE SYSTEM

GM is equal to 1/|[KG(jo)| (—\KG(ja))\dB) at the frequency
where ZG(jw)=-180".

The PHASE MARGIN (PM) is the value by which the phase
can be raised before instability results.

PM <0 = UNSTABLE SYSTEM

PM is the amount by which the phase of G(jow) exceeds
-180° when |KG(jo)| =1 (KG(j®)|,, =0)

ME 343 - Control Systems — Fall 2009 388




Stability Margins

Bode Diagrams 1
Fram: Uf13 G(S) = 2
50 T s . S(S + l)
I /GM
o 1

iny -50+
B
o
E -100
=
g 150
£ :
= -50
o
B
@ -100F 1t
b i
£ gsop PM ™

o 2004 P

-230 -
300 L Jod .
10° 10 10° 10 107
Freguency (radfsec)
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Frequency Response

u(t) = Acos(wt + g) —i G(s) — y,, =|G(jw)|Acos(art + ¢+ LG(jw))

\ Stable Transfer Function

G(jw) = ‘G(ja))‘ejlc(jw) BODE plots

G(jo) =Re{G(jw)}+ jIm{G(jw)} NYQUIST plots
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Nyquist Diagrams
G(jw)= Re{G(ja))}-l— Jj Im{G(ja))} — ‘G(ja))‘ejm(j“’)

How are the Bode and Nyquist plots related?

They are two way to represent the same information
JIm{G(j @)}

G(j)

/—\ /G(jw)

\_J Re(G (/o))
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Nyquist Diagrams
General procedure for sketching Nyquist Diagrams:
- Find G(j0)
- Find G(j)

e Find o* such that Re{G(w*}=0; Im{G(w*)} is the
intersection with the imaginary axis.

e Find o* such that Im{G(»*}=0; Re{G(w*)} is the
intersection with the real axis.

e Connect the points
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Neutral Stability
U(s) + KG(S Y(s)

1

()= s(s +1)2

Root Locus

Root locus condition:

: \ KG(s) =1, £G(s)=-180’

: > At points of neutral stability
RL condition hold for s=jo
| KG(w)|=1 Z£G(jw)=-180°
_ ‘ . . . Stability: At £G(jo)=-180°
-2 15 1 5 i 05

1
Feal e KG(jw) <1 If TK leads to instability
KG(jw)|>1 If K leads to instability

Imag Axis
=]

05F
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Stability Margins

The GAIN MARGIN (GM) is the factor by which the gain
can be raised before instability results.

GM|<1(GM|,, <0)= UNSTABLE SYSTEM

GM is equal to 1/|[KG(j)| (—\KG(ja))\dB) at the frequency
where ZG(jw)=-180".

The PHASE MARGIN (PM) is the value by which the phase
can be raised before instability results.

PM <0 = UNSTABLE SYSTEM

PM is the amount by which the phase of G(jw) exceeds
-180° when |KG(jo)| =1 (KG(j®)|,, =0)
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Stability Marains

Bode Diagrams
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Stability Margins
1
G(s) =
S(s + l)2 1/Gm
Myquist Plot
.:(&:
&
E
£
-Real Axis
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Nyquist Stability Criterion

Im(s) Im[H (5)]
Case 1: No pole/zero '

within contour
H (5)

fJIG Ci 5o

—=F %0

% @l
'J’L_ U Re(s) wke”ﬁm]
T
Im(s) Im[H,(s)]
Case 2: Pole/zero
within contour ) ()
Yo\l Cy
%0 2 /
)\ “

w Re(s) \\_/ Re[H,(s)]
R

Argument Principle: A contour map of a complex function
will encircle the origin Z-P times, where Z is the number
of zeros and P is the number of poles of the function
inside the contour.
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Nyquist Stability Criterion
Let us consider this contour and closed-loop system
+ Im(s)
[T~ Contour at
\\{ infinity Uls) - KG(s) ¥(s)
N
\\
\ C] \
\
W L
JJ Re(s)
¥ The closed-loop poles are the
c ; )
./ solutions (roots) of:
//
/A’
| _—— 1+ KG(s)=0
The evaluation of H(s) will

encircle the origin only if
H(s) has a RHP zero or pole
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Nyquist Stability Criterion

Let us apply the argument principle to the function H(s) =1+KG(s).

Im ¢ Im
[KG(9)]s—¢, [1 + KG)]—¢,
Py .
= g Re L Re
If the plot of 1+KG(s) encircles the origin, the plot of KG(s)
encircles -1 on the real axis.
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Nyquist Stability Criterion

By writin
d ° b(s) _ a(s) + Kb(s)

a(s) a(s)

we can conclude that the poles of 1+KG(s) are also the poles of
G(s). Assuming no pole of G(s) in the RHP, an encirclement of
the point -1 by KG(s) indicates a zero of 1+KG(s) in the RHP, and
thus an unstable pole of the closed-loop system.

1+ KG(s)=1+K

A clockwise contour of C1 enclosing a zero of 1+KG(s) will result
in KG(s) encircling the -1 point in the clockwise direction.

A clockwise contour of C1 enclosing a pole of 1+KG(s) will result
in KG(s) encircling the -1 point in the counterclockwise direction.

The net number of clockwise encirclements of the point -1, N,

equals the number of zeros (closed-loop poles) in the RHP, Z,

minus the number of poles (open-loop poles) in the RHP, P:
N=Z-P
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Nyquist Stability Criterion

U(S) + G(S) Y'(S)

When is this transfer function Stable?

NYQUIST: The closed loop is asymptotically stable if the
number of counterclockwise encirclements (N negative)
of the point (-1+;/0) by the Nyquist curve of G(jw) is
equal to the number of poles of G(s) with positive real
parts (unstable poles) (P).

Corollary: If the open-loop system G(s) is stable (P=0),
then the closed-loop system is also stable provided G(s)
makes no encirclement of the point (-1+;0) (N=0) .

ME 343 - Control Systems — Fall 2009
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Specifications in the Frequency Domain

1. The crossover frequency @,., which determines
bandwith wgy, rise time ¢, and settling time ¢,.

2. The phase margin PM, which determines the
damping coefficient { and the overshoot Mp.

3. The low-frequency gain, which determines the
steady-state error characteristics.

ME 343 — Control Systems — Fall 2009

402




Specifications in the Frequency Domain

The crossover frequency:

@, < Wy, <20,

PM = 22°

~
~
2.0 - \
(T e ~ PM = 45° 0
Y

db

|Tjw)| = |KG(jw)|

=20

|KG ()|

=z
>
©
Z 10
=07
3

-3
B PM = 9(F
o
3 0.2
i
= 01
-~

© Bandwidth
w (rad/sec)
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Frequency Response — Phase Lead Compensators

51
|
2
|Dis)| 1 —te :
1! :
0.5 w = t
I
0.2 |
l
0.1 = L
0.1 1 w10 100
wl
o(F — Tt
- 4
X
607
£D(5)
Rl
o .
i

2 Ts+1
0 D(s)= T2 g<1
als+1
0 & azl—sin¢MAX
1+sing,,,,

logw L Iog(ljﬂog[l)
~20 MAX 9 T aTl

It is a high-pass filter and approximates
PD |control. It is wused whenever
substantial improvement in damping is
needed. It tends to increase the speed of
response of a system for a fixed low-

0.1 I w10 100
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frequency gain.
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Frequency Response — Phase Lead Compensators

1. Determine the open-loop gain K to satisfy error or bandwidth
requirements:
- To meet error requirement, pick K to satisfy error
constants (K, K, K,) so that e specification is met.
- To meet bandwidth requirement, pick K so that the
open-loop crossover frequency is a factor of two below the
desired closed-loop bandwidth.

2. Determine the needed phase lead — o based on the PM
specification. , _1-sind,,
1+sing,,,
3. Pick m,,, to be at the crossover frequency.

4. Determine the zero and pole of the compensator.
z=UT= w,,,, a'? p=V aT= w,,, a'?
5. Draw the compensated frequency response and check PM.

6. Iterate on the design. Add additional compensator if needed.
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Frequency Response — Phase Lag Compensators

Ts+1

D(s)=« ,
(5) als +1

a>1

[\
It is a low-pass filter and approximates PI
30 control. It is used to increase the low
frequency gain of the system and improve

Dis 60° |

v steady state response for fixed bandwidth.
90 For a fixed low-frequency gain, it will
. decrease the speed of response of the

or 10 . system.
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Frequency Response — Phase Lag Compensators

1. Determine the open-loop gain K that will meet the PM
requirement without compensation.

2. Draw the Bode plot of the uncompensated system with
crossover frequency from step 1 and evaluate the low-
frequency gain.

3. Determine o to meet the low frequency gain error
requirement.

4. Choose the corner frequency «o=1/T (the zero of the
compensator) to be one decade below the new crossover
frequency o.,.

5. The other corner frequency (the pole of the compensator)
is then w=1/a T.

6. lIterate on the design
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