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Writing the loop gain as KL(s) we are interested in tracking 
the closed-loop poles as “gain” K varies
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Root Locus
Characteristic Equation:

0)(1 =+ sKL

The roots (zeros) of the characteristic equation are the 
closed-loop poles of the feedback system!!!

The closed-loop poles are a function of the “gain” K

Writing the loop gain as
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Root Locus

{ } { })()()(1 LKLsKL numdenrootszerosRL +=+=
when K varies from 0 to ∞ (positive Root Locus) or 

from 0 to -∞ (negative Root Locus)
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Phase and Magnitude of a Transfer Function
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The factors K, (s-zj) and (s-pk) are complex numbers: 
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Phase and Magnitude of a Transfer Function

Now it is easy to give the phase and magnitude 
of the transfer function:
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Root Locus by Phase Condition

Example: K
-
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Root Locus by Phase Condition

o43.108o87.36

o45

o70.78

o90

[ ] oooooo 18070.784587.3643.10890 −≈+++− iso 31+−=⇒ belongs to the locus!

Note: Check code rlocus_phasecondition.m
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Root Locus by Phase Condition

We need a systematic approach to plot the closed-loop poles 
as function of the gain K → ROOT LOCUS

iso 31+−=

351

ME 343 – Control Systems – Fall 2009

Root Locus

Basic Properties:

• Number of branches = number of open-loop poles 
• RL begins at open-loop poles

• RL ends at open-loop zeros or asymptotes

• RL symmetrical about Re-axis
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when K varies from 0 to ∞ (positive Root Locus) or 
from 0 to -∞ (negative Root Locus)
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Root Locus

Rule 1: The n branches of the locus start at the poles of L(s)
and m of these branches end on the zeros of L(s).
n: order of the denominator of L(s)
m: order of the numerator of L(s)

Rule 2: The locus is on the real axis to the left of and odd 
number of poles and zeros.
In other words, an interval on the real axis belongs to the 
root locus if the total number of poles and zeros to the right 
is odd.
This rule comes from the phase condition!!!
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Root Locus

Rule 3: As K→∞, m of the closed-loop poles approach the 
open-loop zeros, and n-m of them approach n-m asymptotes 
with angles
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Root Locus

Rule 4: The locus crosses the  jω axis (looses stability) where 
the Routh criterion shows a transition from roots in the left 
half-plane to roots in the right-half plane.

Example:
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Root Locus

Design dangers revealed by the Root Locus: 

• High relative degree: For n-m≥3 we have closed loop 
instability due to asymptotes.

• Nonminimum phase zeros: They attract closed loop poles 
into the RHP
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Note: Check code rootlocus.m
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Root Locus

Viete’s formula: 

When the relative degree n-m≥2, the sum of the closed loop 
poles is constant

∑−= poles loop closed1a
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Root Locus- Magnitude and Phase Conditions

{ } { })()()(1 LKLsKL numdenrootszerosRL +=+=
when K varies from 0 to ∞ (positive Root Locus) or 

from 0 to -∞ (negative Root Locus)
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Root Locus

Selecting K for desired closed loop poles on Root Locus: 

If so belongs to the root locus, it must satisfies the 
characteristic equation for some value of K

Then we can obtain K as 
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Root Locus – Phase lead compensator

Pure derivative control is not normally practical because of the
amplification of the noise due to the differentiation and must 
be approximated:
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When we study frequency response we will understand why 
we call “Phase Lead” to this compensator.
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Root Locus – Phase lead compensator
Example:

Phase lead 
COMPENSATOR
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Let us choose p=20
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Root Locus – Phase lead compensator
Example:

Phase lead 
COMPENSATOR
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Root Locus – Phase lead compensator

Selecting z and p is a trial an error procedure. In general:

• The zero is placed in the neighborhood of the closed-
loop natural frequency, as determined by rise-time or 
settling time requirements.
• The poles is placed at a distance 5 to 20 times the 
value of the zero location. The pole is fast enough to 
avoid modifying the dominant pole behavior.

The exact position of the pole p is a compromise between:

• Noise suppression (we want a small value for p)
• Compensation effectiveness (we want large value for p)
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Root Locus – Phase lag compensator
Example:

Phase lag 
COMPENSATOR
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Root Locus – Phase lag compensator
Example: ( )( )51
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Root Locus – Phase lag compensator

Selecting z and p is a trial an error procedure. In general:

• The ratio zero/pole is chosen based on the error 
constant specification.
• We pick z and p small to avoid affecting the dominant 
dynamic of the system (to avoid modifying the part of 
the locus representing the dominant dynamics)
• Slow transient due to the small p is almost cancelled 
by an small z. The ratio zero/pole cannot be very big.

The exact position of z and p is a compromise between:

• Steady state error (we want a large value for z/p)
• The transient response (we want the pole p placed far 
from the origin)
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Root Locus - Compensators

Phase lead compensator: pz
ps
zssD <

+
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pz
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zssD >
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=      ,)(Phase lag compensator:

We will see why we call “phase lead” and “phase lag” to 
these compensators when we study frequency response
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Frequency Response

• We now know how to analyze and design systems via  s-domain 
methods which yield dynamical information

• The responses are described by the exponential modes
– The modes are determined by the poles of the response Laplace 

Transform

• We next will look at describing system performance via frequency
response methods

• This guides us in specifying the system pole and zero  positions
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Sinusoidal Steady-State Response
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Consider a stable transfer function with a 
sinusoidal input:

• Where the natural system modes lie

–These are in the open left half plane Re(s)<0

• At the input modes s=+jω and s=-jω

Only the response due to the poles on the imaginary 
axis remains after a sufficiently long time

This is the sinusoidal steady-state response

The Laplace Transform of the response has poles
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Sinusoidal Steady-State Response

• Input

• Transform

• Response Transform

• Response Signal

• Sinusoidal Steady State Response
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Sinusoidal Steady-State Response

• Calculating the SSS response to
• Residue calculation

• Signal calculation
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Sinusoidal Steady-State Response

• Response to
is

– Output frequency = input frequency
– Output amplitude = input amplitude × |G(jω)|
– Output phase        = input phase +     G(jω)

• The Frequency Response of the transfer function G(s) is given 
by its evaluation as a function of a complex variable at s=jω

• We speak of the amplitude response and of the phase response
– They cannot independently be varied

» Bode’s relations of analytic function theory
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Frequency Response

373
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Stable Transfer Function

• After a transient, the output settles to a sinusoid with an 
amplitude magnified by            and phase shifted by          .

• Since all signals can be represented by sinusoids (Fourier 
series and transform), the quantities            and            are 
extremely important.

• Bode developed methods for quickly finding            and      
for a given           and for using them in control design.
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Bode Diagrams

374

The magnitude and phase of G(s) when s=jω is given by:
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Bode Diagrams

375
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Why do we express            in decibels?
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The magnitude and phase of G(s) when s=jω is given by:
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Bode Diagrams

376

A cutoff frequency occurs when the gain is reduced from its 
maximum passband value by a factor        :2/1

dB3log202log20log20
2

1log20 −≈−=⎟
⎠
⎞

⎜
⎝
⎛

MAXMAXMAX TTT

Decade: Any frequency range whose end points have a 10:1 ratio
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This is a low-pass filter!!! Passband gain=1, Cutoff frequency=R/L
The Bandwith is R/L!
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General Transfer Function (Bode Diagrams)

377
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The magnitude (dB) (phase) is the sum of the magnitudes (dB)
(phases) of each one of the terms. We learn how to plot each term, 
we learn how to plot the whole magnitude and phase Bode Plot.
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General Transfer Function: DC gain
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General Transfer Function: Poles/zeros at origin
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General Transfer Function: Real poles/zeros
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General Transfer Function: Real poles/zeros

381
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General Transfer Function: Real poles/zeros
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( )
2

1
−

=
s

sGExample:

• Same             .

• The effect on              is opposite than the stable case.

)( ωjG

)( ωjG∠

An unstable pole behaves like a stable zero
An “unstable” zero behaves like a “stable” pole

This frequency response cannot be found experimentally 
but can be computed and used for control design.



ME 343 – Control Systems – Fall 2009

Neutral Stability

387

)(sKG
-

+)(sU )(sY

( )21
1)(
+

=
ss

sG

Root locus condition:

o180)(,1)( −=∠= sGsKG    

At points of neutral stability
RL condition hold for s=jω

o180)(,1)( −=∠= ωω jGjKG    
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Stability: At o180)( −=∠ ωjG

If ↑K leads to instability
If ↓K leads to instability
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The GAIN MARGIN (GM) is the factor by which the gain 
can be raised before instability results.

The PHASE MARGIN (PM) is the value by which the phase 
can be raised before instability results.

( )⇒<< 01 dBGMGM UNSTABLE SYSTEM

⇒< 0PM UNSTABLE SYSTEM

PM is the amount by which the phase of            exceeds 
-180° when 

)( ωjG
( )0)(1)( == dBjKGjKG ωω   

GM is equal to   at the frequency 
where                       .     o180)( −=∠ ωjG

( )dBjKGjKG )()(/1 ωω −  
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)cos()( φω += tAtu )(sG ))(cos()( ωφωω jGtAjGyss ∠++=

Stable Transfer Function

)()()( ωωω jGjejGjG ∠= BODE plots

{ } { })(Im)(Re)( ωωω jGjjGjG += NYQUIST plots
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{ } { } )()()(Im)(Re)( ωωωωω jGjejGjGjjGjG ∠=+=

{ })(Re ωjG

{ })(Im ωjGj

How are the Bode and Nyquist plots related?

)( ωjG

)( ωjG∠

They are two way to represent the same information
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General procedure for sketching Nyquist Diagrams:

• Find G(j0)

• Find G(j∞)

• Find ω* such that Re{G(jω*)}=0; Im{G(jω*)} is the 
intersection with the imaginary axis.

• Find ω* such that Im{G(jω*)}=0; Re{G(jω*)} is the 
intersection with the real axis.

• Connect the points 
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o180)(,1)( −=∠= sGsKG    

At points of neutral stability
RL condition hold for s=jω

o180)(,1)( −=∠= ωω jGjKG    

1)(

1)(

>

<

ω

ω

jKG

jKG
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The GAIN MARGIN (GM) is the factor by which the gain 
can be raised before instability results.

The PHASE MARGIN (PM) is the value by which the phase 
can be raised before instability results.

( )⇒<< 01 dBGMGM UNSTABLE SYSTEM

⇒< 0PM UNSTABLE SYSTEM

PM is the amount by which the phase of            exceeds 
-180° when 

)( ωjG
( )0)(1)( == dBjKGjKG ωω   

GM is equal to   at the frequency 
where                       .     o180)( −=∠ ωjG

( )dBjKGjKG )()(/1 ωω −  
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Argument Principle: A contour map of a complex function 
will encircle the origin Z-P times, where Z is the number 
of zeros and P is the number of poles of the function 
inside the contour.  

Case 1: No pole/zero 
within contour 

Case 2: Pole/zero 
within contour 
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Let us consider this contour and closed-loop system

)(sKG
-

+)(sU )(sY

0=)(+1 sKG

The closed-loop poles are the 
solutions (roots) of:

The evaluation of H(s) will 
encircle the origin only if 
H(s) has a RHP zero or pole
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Let us apply the argument principle to the function H(s) =1+KG(s).

If the plot of 1+KG(s) encircles the origin, the plot of KG(s)
encircles -1 on the real axis. 
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By writing

A clockwise contour of C1 enclosing a zero of 1+KG(s) will result 
in KG(s) encircling the -1 point in the clockwise direction. 
A clockwise contour of C1 enclosing a pole of 1+KG(s) will result 
in KG(s) encircling the -1 point in the counterclockwise direction. 

)(
)(+)(

=
)(
)(

+1=)(+1
sa

sKbsa
sa
sb

KsKG

we can conclude that the poles of 1+KG(s) are also the poles of 
G(s). Assuming no pole of G(s) in the RHP,  an encirclement of  
the point -1 by KG(s) indicates a zero of 1+KG(s) in the RHP, and 
thus an unstable pole of the closed-loop system.  

The net number of clockwise encirclements of the point -1, N, 
equals the number of zeros (closed-loop poles) in the RHP, Z, 
minus the number of poles (open-loop poles) in the RHP, P:

PZN −=
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+)(sU )(sY

When is this transfer function Stable?

NYQUIST: The closed loop is asymptotically stable if the 
number of counterclockwise encirclements (N negative) 
of the point   (-1+j0) by the Nyquist curve of G(jω) is 
equal to the number of poles of G(s) with positive real 
parts (unstable poles) (P).

Corollary: If the open-loop system G(s) is stable (P=0), 
then the closed-loop system is also stable provided G(s)
makes no encirclement of the point (-1+j0) (N=0) . 
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1. The crossover frequency ωc, which determines 
bandwith ωBW, rise time tr and settling time ts.

2. The phase margin PM, which determines the 
damping coefficient ζ and the overshoot Mp.

3. The low-frequency gain, which determines the 
steady-state error characteristics.
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The crossover frequency: cBWc ωωω 2≤≤
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It is a high-pass filter and approximates 
PD control. It is used whenever 
substantial improvement in damping is 
needed. It tends to increase the speed of 
response of a system for a fixed low-
frequency gain.
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1. Determine the open-loop gain K to satisfy error or bandwidth 
requirements: 

- To meet error requirement, pick K to satisfy error 
constants (Kp, Kv, Ka) so that ess specification is met.

- To meet bandwidth requirement, pick K so that the 
open-loop crossover frequency is a factor of two below the 
desired closed-loop bandwidth.

2. Determine the needed phase lead → α based on the PM 
specification.

3. Pick ωMAX to be at the crossover frequency. 

4. Determine the zero and pole of the compensator. 
z=1/T= ωMAX α1/2 p=1/ α T= ωMAX α-1/2

5. Draw the compensated frequency response and check PM.

6. Iterate on the design. Add additional compensator if needed.
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It is a low-pass filter and approximates PI 
control. It is used to increase the low 
frequency gain of the system and improve 
steady state response for fixed bandwidth. 
For a fixed low-frequency gain, it will 
decrease the speed of response of the 
system. 
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1. Determine the open-loop gain K that will meet the PM 
requirement without compensation. 

2. Draw the Bode plot of the uncompensated system with 
crossover frequency from step 1 and evaluate the low-
frequency gain.

3. Determine α to meet the low frequency gain error 
requirement.

4. Choose the corner frequency ω=1/T (the zero of the 
compensator) to be one decade below the new crossover 
frequency ωc. 

5. The other corner frequency (the pole of the compensator) 
is then ω=1/ α T.

6. Iterate on the design


