

ME 343 – Control Systems

Lecture 25
October 21, 2009

Frequency Response

$$u(t) = A \cos(\omega t + \phi) \rightarrow \boxed{G(s)} \rightarrow y_{ss} = |G(j\omega)| A \cos(\omega t + \phi + \angle G(j\omega))$$

Stable Transfer Function

$$G(j\omega) = |G(j\omega)| e^{j\angle G(j\omega)} \quad \text{BODE plots}$$

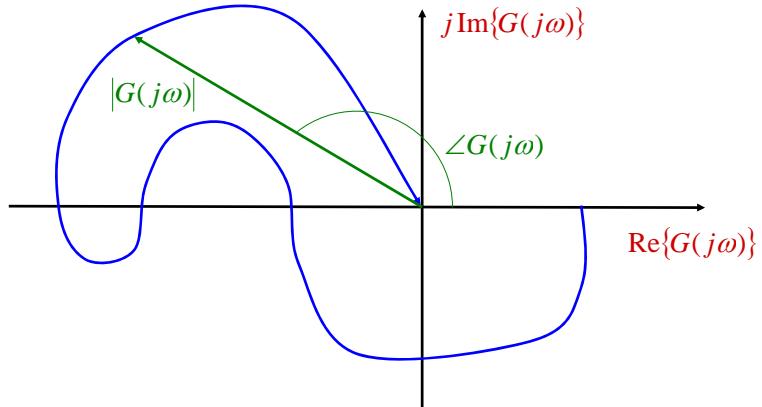
$$G(j\omega) = \operatorname{Re}\{G(j\omega)\} + j \operatorname{Im}\{G(j\omega)\} \quad \text{NYQUIST plots}$$

Nyquist Diagrams

$$G(j\omega) = \operatorname{Re}\{G(j\omega)\} + j \operatorname{Im}\{G(j\omega)\} = |G(j\omega)| e^{j\angle G(j\omega)}$$

How are the Bode and Nyquist plots related?

They are two way to represent the same information



Nyquist Diagrams

General procedure for sketching Nyquist Diagrams:

- Find $G(j0)$
- Find $G(j\infty)$
- Find ω^* such that $\operatorname{Re}\{G(j\omega^*)\}=0$; $\operatorname{Im}\{G(j\omega^*)\}$ is the intersection with the imaginary axis.
- Find ω^* such that $\operatorname{Im}\{G(j\omega^*)\}=0$; $\operatorname{Re}\{G(j\omega^*)\}$ is the intersection with the real axis.
- Connect the points

Nyquist Diagrams

Example: $G(s) = \frac{1}{s(s+1)^2}$

$$G(j\omega) = \frac{1}{j\omega(j\omega+1)^2} = \frac{1}{j\omega(j\omega+1)^2} \frac{(-j\omega)(1-j\omega)^2}{(-j\omega)(1-j\omega)^2} = \frac{-2\omega + j(\omega^2 - 1)}{\omega(\omega^2 + 1)^2}$$

1 - $\omega \rightarrow 0 : G(j\omega) = -2 - j\infty$

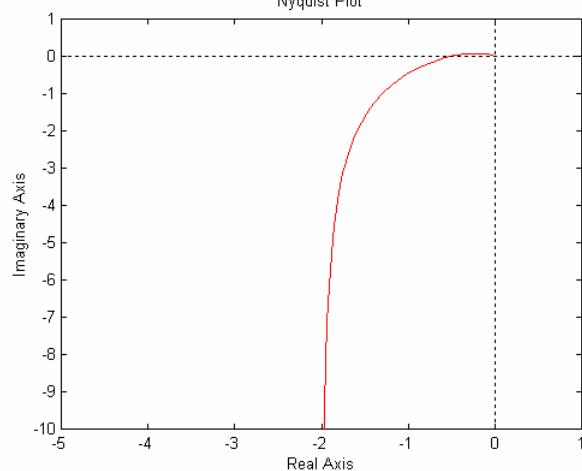
2 - $\omega \rightarrow \infty : G(j\omega) \xrightarrow{\omega \rightarrow \infty} j \frac{1}{\omega^3} \xrightarrow{\omega \rightarrow \infty} 0$

3 - $\operatorname{Re}\{G(j\omega)\} = 0 \Leftrightarrow \omega = \infty$

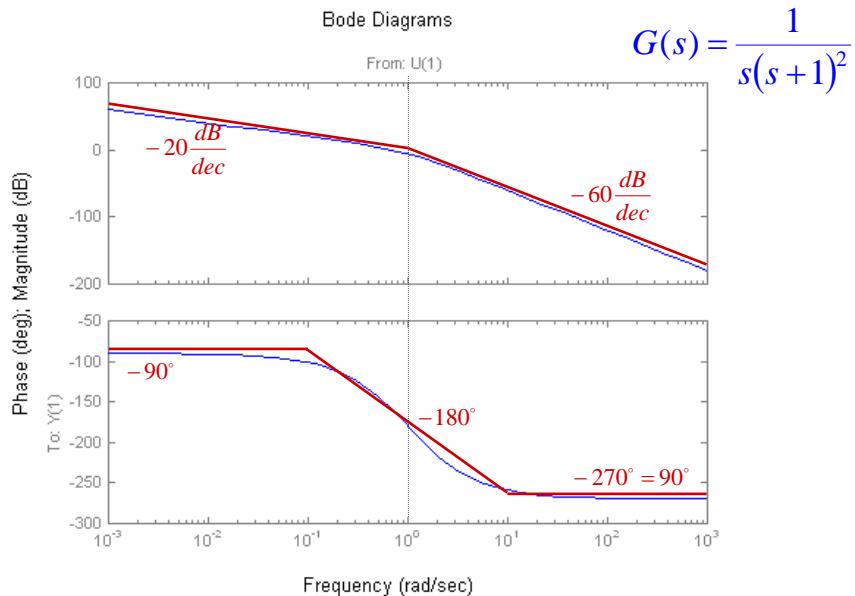
4 - $\operatorname{Im}\{G(j\omega)\} = 0 \Leftrightarrow \omega = 1, \omega = \infty \quad \operatorname{Re}\{G(j1)\} = -\frac{1}{2}$

Nyquist Diagrams

Example: $G(s) = \frac{1}{s(s+1)^2}$

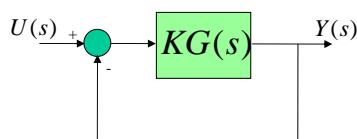
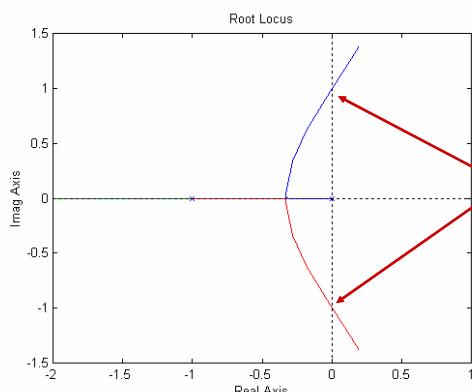


Nyquist Diagrams from Bode Diagrams



Neutral Stability

$$G(s) = \frac{1}{s(s+1)^2}$$



Root locus condition:

$$|KG(s)| = 1, \quad \angle G(s) = -180^\circ$$

At points of neutral stability
RL condition hold for $s = j\omega$

$$|KG(j\omega)| = 1, \quad \angle G(j\omega) = -180^\circ$$

Stability: At $\angle G(j\omega) = -180^\circ$

$|KG(j\omega)| < 1$ If $\uparrow K$ leads to instability
 $|KG(j\omega)| > 1$ If $\downarrow K$ leads to instability

Stability Margins

The GAIN MARGIN (GM) is the factor by which the gain can be raised before instability results.

$$|GM| < 1 \quad (|GM|_{dB} < 0) \Rightarrow \text{UNSTABLE SYSTEM}$$

GM is equal to $1/|KG(j\omega)|$ ($-|KG(j\omega)|_{dB}$) at the frequency where $\angle G(j\omega) = -180^\circ$.

The PHASE MARGIN (PM) is the value by which the phase can be raised before instability results.

$$PM < 0 \Rightarrow \text{UNSTABLE SYSTEM}$$

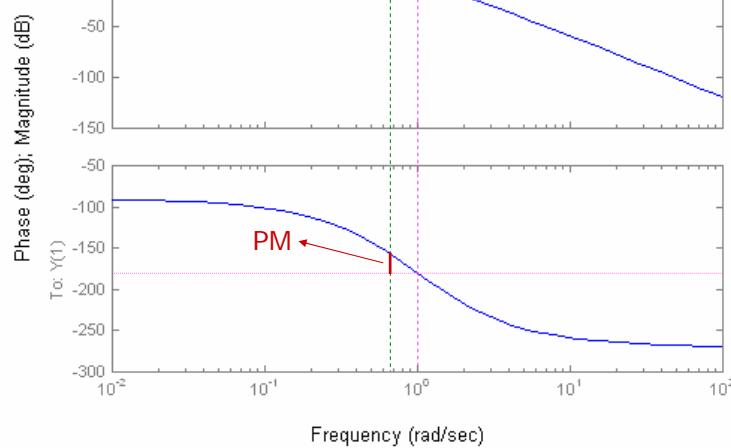
PM is the amount by which the phase of $G(j\omega)$ exceeds -180° when $|KG(j\omega)| = 1$ ($|KG(j\omega)|_{dB} = 0$)

Stability Margins

Bode Diagrams

From: U(1)

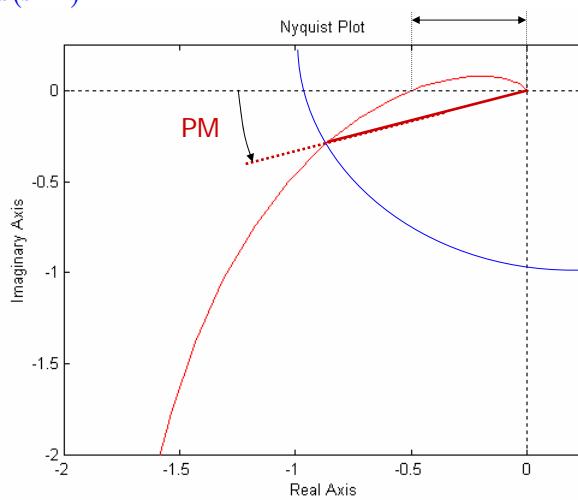
$$G(s) = \frac{1}{s(s+1)^2}$$



Stability Margins

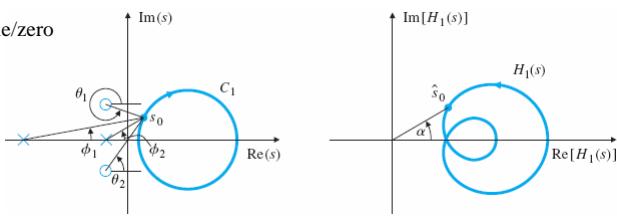
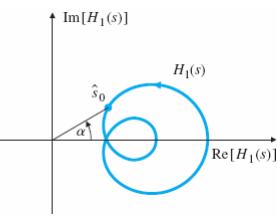
$$G(s) = \frac{1}{s(s+1)^2}$$

1/GM

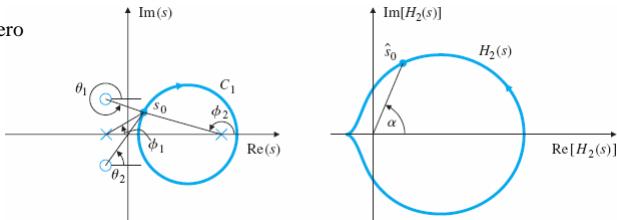
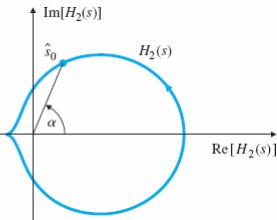


Nyquist Stability Criterion

Case 1: No pole/zero within contour



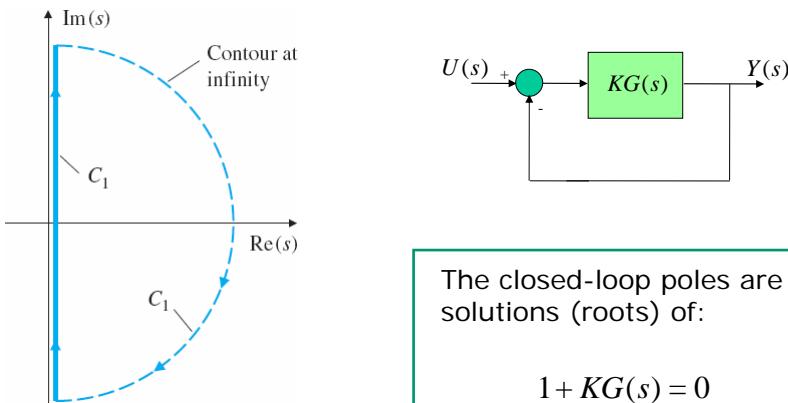
Case 2: Pole/zero within contour



Argument Principle: A contour map of a complex function will encircle the origin Z - P times, where Z is the number of zeros and P is the number of poles of the function inside the contour.

Nyquist Stability Criterion

Let us consider this contour and closed-loop system



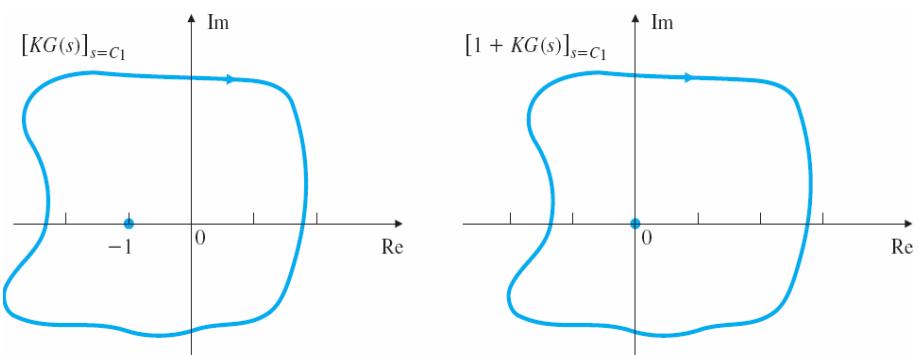
The closed-loop poles are the solutions (roots) of:

$$1 + KG(s) = 0$$

The evaluation of $H(s)$ will encircle the origin only if $H(s)$ has a RHP zero or pole

Nyquist Stability Criterion

Let us apply the argument principle to the function $H(s) = 1 + KG(s)$.



If the plot of $1 + KG(s)$ encircles the origin, the plot of $KG(s)$ encircles -1 on the real axis.

Nyquist Stability Criterion

By writing

$$1 + KG(s) = 1 + K \frac{b(s)}{a(s)} = \frac{a(s) + Kb(s)}{a(s)}$$

we can conclude that the poles of $1+KG(s)$ are also the poles of $G(s)$. Assuming no pole of $G(s)$ in the RHP, an encirclement of the point -1 by $KG(s)$ indicates a zero of $1+KG(s)$ in the RHP, and thus an unstable pole of the closed-loop system.

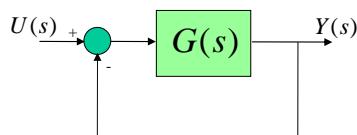
A clockwise contour of C_1 enclosing a zero of $1+KG(s)$ will result in $KG(s)$ encircling the -1 point in the clockwise direction.

A clockwise contour of C_1 enclosing a pole of $1+KG(s)$ will result in $KG(s)$ encircling the -1 point in the counterclockwise direction.

The net number of clockwise encirclements of the point -1 , N , equals the number of zeros (closed-loop poles) in the RHP, Z , minus the number of poles (open-loop poles) in the RHP, P :

$$N = Z - P$$

Nyquist Stability Criterion



When is this transfer function Stable?

NYQUIST: The closed loop is asymptotically stable if the number of counterclockwise encirclements (N negative) of the point $(-1+j0)$ by the Nyquist curve of $G(j\omega)$ is equal to the number of poles of $G(s)$ with positive real parts (unstable poles) (P).

Corollary: If the open-loop system $G(s)$ is stable ($P=0$), then the closed-loop system is also stable provided $G(s)$ makes no encirclement of the point $(-1+j0)$ ($N=0$).

Nyquist Stability Criterion

$$G(s) = \frac{1}{s^4 + 2s^3 + 3s^2 + 3s + 1}$$

$$G(s) = \frac{1}{s^4 + 5s^3 + 3s^2 + 3s + 1}$$

