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Lecture 25
October 21, 2009
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Frequency Response

u(t) = Acos(at +¢) — G(S) — VY. =|G(jw) Acos(at+ ¢+ £G(jw))

\ Stable Transfer Function

G(jw) :‘G(ja))‘ejle(jw) BODE plots

G(jow)=Re{G(jw)}+ jIm{G(jm)} NYQUIST plots
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Nyquist Diagrams
G(jw) =Re{G(jw)}+ jIm{G(jw)}=|G(jw)e 1
How are the Bode and Nyquist plots related?

They are two way to represent the same information
im{G(jw)}

G(j)
£G(jo)

\_ k RelG(ja))
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Nyquist Diagrams
General procedure for sketching Nyquist Diagrams:
- Find G(j0)
- Find G(joo)

e Find «* such that Re{G(jo*)}=0; Im{G(jw*)} is the
intersection with the imaginary axis.

e Find «* such that Im{G(jo*)}=0; Re{G(jo*)} is the
intersection with the real axis.

e Connect the points
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Nyquist Diagrams

1

Example: G(s)=————
) s(s+1)°

o) = 1 _ 1 (—ja))(l—ja))2 _—2a)+j(a)2—l)
U= 0+ " jalio1f C jo)i-jof e +1f

1- 0—-0:G(jo)=-2-jo

2- 0—>0:G(jw)

> ]
>0 3 w0
@

3- Re{G(jo)}=0w=x

4- ImG(jo)}=0e0=Lo=mx Re{G(jl)}:_%
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Nyquist Diagrams

Example: G(s) = —
s(s+1)
Myguist Plot
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Nyquist Diagrams from Bode Diagrams

Bode Diagrams 1
Fram: L) G (S) = 2
o . . . . s(s+1)
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Neutral Stability
Ve g lKG(s) 1
L g
G =———
) s(s+1)
Root Locus
15 T
Root locus condition:
|t
\KG(S)\:L £G(s) =-180°
05}
% 0 > At points of neutral stability
£ RL condition hold for s=jo
05k
il \KG(ja))\zl, ZG(jw)=-180°
15 . L L i . Stabillty: At ZG(jw):*lSOO
-2 -1.5 -1 05 0 0s

1
Real s KG(jow) <1 If TK leads to instability
KG(jw)|>1 If {K leads to instability
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Stability Margins

The GAIN MARGIN (GM) is the factor by which the gain
can be raised before instability results.

GM|<1(GM|, <0)= UNSTABLE SYSTEM

GM is equal to 1/|KG(jo)| (—\KG(ja))\dB) at the frequency
where ZG(jw)=-180".

The PHASE MARGIN (PM) is the value by which the phase
can be raised before instability results.

PM <0 = UNSTABLE SYSTEM

PM is the amount by which the phase of G(jw) exceeds
-180° when |KG(jo) =1 (KG(jo)|,, =0)
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Stability Marains

Bode Diagrams 1

| G(S)=———
. , Fr}om.!U(‘I) , (S) S(S i 1)2

Phasze (dey); Magnitude (dB)
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Stability Margins

Gle)= s(s+1) 1/GM

Mygquist Plot

Imaginary Axis

2 1 1 1 i
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Real Axis
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Nyquist Stability Criterion

Im(s) Im[H s
Case 1: No pole/zero =t mIHy )
within contour
Hyis)
HIG_ €y 5o
,.:,-F—- Rl
e, o
'J’Lr 2 Re(s) Re[H,(s)]
S
Imi(s) Im[H,(s5)]
Case 2: Pole/zero
within contour 5 Hy(5)
oy Ci
st %0 @2 /
4 T

w Res) \ Re[H,(5)]
A

Argument Principle: A contour map of a complex function
will encircle the origin Z-P times, where Z is the number
of zeros and P is the number of poles of the function
inside the contour.
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Nyquist Stability Criterion

Let us consider this contour and closed-loop system

+ Imis)

~ Contour at
~ PP
~" infinity
N

The evaluation of H(s) will
encircle the origin only if
H(s) has a RHP zero or pole
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u(s) Y(s)

KG(s)

The closed-loop poles are the
solutions (roots) of:

1+KG(s) =0
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Nyquist Stability Criterion

Let us apply the argument principle to the function H(s) =1+KG(s).

Im
[KG$)]=¢,

L 3

¢ Im
[1+ KG($)],=g,

0

Re

If the plot of 1+KG(s) encircles the origin, the plot of KG(s)
encircles -1 on the real axis.
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Nyquist Stability Criterion

By writing
b(s) a(s)+Kb(s

1+KG(s) =1+K (): (5) ()
a(s) a(s)
we can conclude that the poles of 1+KG(s) are also the poles of
G(s). Assuming no pole of G(s) in the RHP, an encirclement of
the point -1 by KG(s) indicates a zero of 1+KG(s) in the RHP, and
thus an unstable pole of the closed-loop system.

A clockwise contour of C1 enclosing a zero of 1+KG(s) will result
in KG(s) encircling the -1 point in the clockwise direction.

A clockwise contour of C1 enclosing a pole of 1+KG(s) will result
in KG(s) encircling the -1 point in the counterclockwise direction.

The net number of clockwise encirclements of the point -1, N,

equals the number of zeros (closed-loop poles) in the RHP, Z,

minus the number of poles (open-loop poles) in the RHP, P:
N=Z-P
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Nyquist Stability Criterion

u(s) «+ G(S) Y(s)

When is this transfer function Stable?

NYQUIST: The closed loop is asymptotically stable if the
number of counterclockwise encirclements (N negative)
of the point (-1+j0) by the Nyquist curve of G(jw) is
equal to the number of poles of G(s) with positive real
parts (unstable poles) (P).

Corollary: If the open-loop system G(s) is stable (P=0),
then the closed-loop system is also stable provided G(s)
makes no encirclement of the point (-1+j0) (N=0) .
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G(s)

Nyquist Stability Criterion

1

s*+25°+3s2 +3s+1 ()

1
s* +55% +3s2+3s+1

Myquist Plot

Imaginary Axis

Myquist Plot
.

Imaginary Axis

o
Real Axis
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