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How are the Bode and Nyquist plots related?
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They are two way to represent the same information
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General procedure for sketching Nyquist Diagrams:

• Find G(j0)

• Find G(j∞)

• Find ω* such that Re{G(jω*)}=0; Im{G(jω*)} is the 
intersection with the imaginary axis.

• Find ω* such that Im{G(jω*)}=0; Re{G(jω*)} is the 
intersection with the real axis.

• Connect the points 
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Root locus condition:
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At points of neutral stability
RL condition hold for s=jω
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If ↑K leads to instability
If ↓K leads to instability
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The GAIN MARGIN (GM) is the factor by which the gain 
can be raised before instability results.

The PHASE MARGIN (PM) is the value by which the phase 
can be raised before instability results.

( )⇒<< 01 dBGMGM UNSTABLE SYSTEM

⇒< 0PM UNSTABLE SYSTEM

PM is the amount by which the phase of            exceeds 
-180° when 
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GM is equal to   at the frequency 
where                       .     o180)( −=∠ ωjG
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Argument Principle: A contour map of a complex function 
will encircle the origin Z-P times, where Z is the number 
of zeros and P is the number of poles of the function 
inside the contour.  

Case 1: No pole/zero 
within contour 

Case 2: Pole/zero 
within contour 
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Let us consider this contour and closed-loop system
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The closed-loop poles are the 
solutions (roots) of:

The evaluation of H(s) will 
encircle the origin only if 
H(s) has a RHP zero or pole
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Let us apply the argument principle to the function H(s) =1+KG(s).

If the plot of 1+KG(s) encircles the origin, the plot of KG(s)
encircles -1 on the real axis. 
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By writing

A clockwise contour of C1 enclosing a zero of 1+KG(s) will result 
in KG(s) encircling the -1 point in the clockwise direction. 
A clockwise contour of C1 enclosing a pole of 1+KG(s) will result 
in KG(s) encircling the -1 point in the counterclockwise direction. 
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we can conclude that the poles of 1+KG(s) are also the poles of 
G(s). Assuming no pole of G(s) in the RHP,  an encirclement of  
the point -1 by KG(s) indicates a zero of 1+KG(s) in the RHP, and 
thus an unstable pole of the closed-loop system.  

The net number of clockwise encirclements of the point -1, N, 
equals the number of zeros (closed-loop poles) in the RHP, Z, 
minus the number of poles (open-loop poles) in the RHP, P:

PZN −=
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When is this transfer function Stable?

NYQUIST: The closed loop is asymptotically stable if the 
number of counterclockwise encirclements (N negative) 
of the point   (-1+j0) by the Nyquist curve of G(jω) is 
equal to the number of poles of G(s) with positive real 
parts (unstable poles) (P).

Corollary: If the open-loop system G(s) is stable (P=0), 
then the closed-loop system is also stable provided G(s)
makes no encirclement of the point (-1+j0) (N=0) . 
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