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Laplace Transform

Function f(t) of time
Piecewise continuous and exponential order 

0- limit is used to capture transients and discontinuities at t=0

s is a complex variable (σ+jω)

There is a need to worry about regions of convergence of 
the integral

Units of s are sec-1=Hz

A frequency

If f(t) is volts (amps) then F(s) is volt-seconds (amp-seconds)
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Laplace Transform Properties
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Laplace Transform Properties
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Translation properties:

s-domain translation:

t-domain translation:
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If all poles of F(s) are in the LHP 
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Laplace Transform Properties
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Laplace Transform Table
Signal Waveform Transform

impulse

step

ramp

exponential

damped ramp

sine

cosine

damped sine

damped cosine

)(tδ

22)( βα
α
++

+

s

s

22)( βα
β

++s

22 β
β
+s

22 β+s

s

1

s

1

2
1

s

α+s

1

2)(

1

α+s

)(tu

)(ttu

)(tue tα−

)(tutte α−

( ) )(sin tutβ

( ) )(cos tutβ

( ) )(sin tutte βα−

( ) )(cos tutte βα−



4

ME 343 – Control Systems – Fall 2009 151

Laplace Transform

The diagram commutes
Same answer whichever way you go

Linear
system

Differential
equation

Classical
techniques

Response
signal

Laplace
transform L

Inverse Laplace
transform L-1

Algebraic
equation

Algebraic
techniques

Response
transform
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Solving LTI ODE’s via Laplace Transform

01
1

1

1

0

)1(

0

1

0

)1(
1

0

01
1

1

01
1

1

)0()0(

)()(
asasas

subsya

sU
asasas

bsbsbsb
sY

n
n

n

j
i

j

ji
m

i
i

j
i

j

ji
n

i
i

n
n

n

m
m

m
m

++++

−
+

++++
++++= −

−

−

=

−−

=

−

=

−−
−

=
−

−

−
−

∑∑∑∑
LL

L

( ) ( ) ( ) ( ) ubububyayay m
m

m
m

n
n

n
0

1
10

1
1 +++=+++ −

−
−

− LL

Initial Conditions:

⎥
⎦

⎤
⎢
⎣

⎡
−=⎥

⎦

⎤
⎢
⎣

⎡
−+− ∑∑∑∑∑

−

=

−−

=

−

=

−−
−

=

−

=

−− j
i

j

jii
m

i
i

j
i

j

jii
n

i
i

n

j

jjnn susUsbsysYsasysYs
1

0

)1(

0

1

0

)1(
1

0

1

0

)1( )0()()0()()0()(

( )( ) ( ) ( )( ) ( )0,,0,0,,0 11 uuyy mn KK −−

Recall j
k

j

jkk

k

k

sfsF
dt

tfd ∑
−

=

−−−=
⎭
⎬
⎫

⎩
⎨
⎧ 1

0

)1( )0()(
)(

sL

For a given rational U(s) we get Y(s)=Q(s)/P(s)



5

ME 343 – Control Systems – Fall 2009 153

Computing Transfer Functions via Laplace Transform
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Rational Functions

We shall mostly be dealing with TFs which are 
rational functions – ratios of polynomials in s

pi are the poles and zi are the zeros of the function

K is the scale factor or (sometimes) gain

A proper rational function has n≥m

A strictly proper rational function has n>m

An improper rational function has n<m
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Partial Fraction Expansion - Residues at Simple Poles
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Functions of a complex variable with isolated, finite 
order poles have residues at the poles

Residue at a simple pole:
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Partial Fraction Expansion - Residues at multiple poles
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Partial Fraction Expansion - Residues at Complex Poles

Compute residues at the poles

Bundle complex conjugate pole pairs into second-
order terms if you want … but you will need to be 
careful!

Inverse Laplace Transform is a sum of complex 
exponentials. But the answer will be real.
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Inverting Laplace Transforms in Practice

We have a table of inverse LTs

Write F(s) as a partial fraction expansion

Now appeal to linearity to invert via the table
Surprise!

Nastiness: computing the partial fraction expansion is best 
done by calculating the residues

  

F(s) = bmsm + bm−1sm−1 +L+ b1s + b0

ansn + an−1sn−1 +L+ a1s + a0

= K
(s − z1)(s − z2)L(s − zm )

(s − p1)(s − p2)L(s − pn )

= α1

s − p1( )
+ α2

s − p2( )
+ α31

(s − p3)
+ α32

s − p3( )2
+ α33

s − p3( )3
+ ...+

αq

s − pq( )
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Not Strictly Proper Laplace Transforms

Find the inverse LT of

Convert to polynomial plus strictly proper rational function

Use polynomial division

Invert as normal
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Impulse Response
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Dirac’s delta:

Integration is a limit of a sum 
⇓

u(t) is represented as a sum of impulses

By superposition principle, we only need unit impulse response

System Response:

( )τ−th Response at t to an impulse applied at τ of amplitude u(τ )
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Impulse Response

Convolution: )()(})()({
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t-domain:

The system response is obtained by convolving the input with 
the impulse response of the system.

The system response is obtained by multiplying the transfer 
function and the Laplace transform of the input.
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Impulse response 

Impulse response 
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Block Diagrams

Series:
1G 2G

1G

2G

+

+

Parallel:

21GGG =

21 GGG +=
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Block Diagrams
Negative Feedback:
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Rule: Transfer Function=Forward Gain/(1+Loop Gain)
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Block Diagrams
Positive Feedback:
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Block Diagrams

Moving through a branching point:
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Mason’s Rule
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Mason’s Rule
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Path: a sequence of connected branches in the direction of the 
signal flow without repetition
Loop: a closed path that returns to its starting node
Forward path: connects input and output
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Time Response vs. Poles

Real pole: teth
s
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Time Response vs. Poles

Real pole:
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Time Response vs. Poles

Complex poles:
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Time Response vs. Poles
Complex poles:
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Time Response vs. Poles

Complex poles:
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Time Response vs. Poles
Complex poles:
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Time Response vs. Poles

Complex poles:
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Time Response vs. Poles
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Time Domain Specifications
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Time Domain Specifications

1- The rise time tr is the time it takes the system to 
reach the vicinity of its new set point
2- The settling time ts is the time it takes the system 
transients to decay
3- The overshoot Mp is the maximum amount the 
system overshoot its final value divided by its final 
value
4- The peak time tp is the time it takes the system to 
reach the maximum overshoot point
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Time Domain Specifications

Design specification are given in terms of 

sppr tMtt ,,,

These specifications give the position of the poles

dn ωσζω ,, ⇒

Example: Find the pole positions that guarantee

sec3%,10sec,6.0 ≤<≤ spr tMt
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Time Domain Specifications

Additional poles:
1- can be neglected if they are sufficiently to the left 
of the dominant ones.
2- can increase the rise time if the extra pole is within 
a factor of 4 of the real part of the complex poles.

Zeros:
1- a zero near a pole reduces the effect of that pole in 
the time response.
2- a zero in the LHP will increase the overshoot if the 
zero is within a factor of 4 of the real part of the 
complex poles (due to differentiation).
3- a zero in the RHP (nonminimum phase zero) will 
depress the overshoot and may cause the step 
response to start out in the wrong direction.
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Stability
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Stability

We want: 

tp
n

tptp nekekekty +++= L21
21)(
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t

tpi K10 =∀⎯⎯ →⎯ ∞→      

Definition: A system is asymptotically stable (a.s.) if 
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n LCharacteristic polynomial:

Characteristic equation:
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Stability

Necessary condition for asymptotical stability (a.s.):

iai ∀>     0

Use this as the first test!

If any ai<0, the the system is UNSTABLE!
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Routh’s Criterion

Necessary and sufficient condition
Do not have to find the roots pi!

Routh’s Array:
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Routh’s Criterion

How to remember this?

Routh’s Array:
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Routh’s Criterion

The criterion:

• The system is asymptotically stable 
if and only if all the elements in the first 
column of the Routh’s array are positive

• The number of roots with positive real 
parts is equal to the number of sign 
changes in the first column of the Routh 
array
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Routh’s Criterion

Determine the range of K over which the system is 
stable

K
-

+)(sR )(sY
)(sG
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Routh’s Criterion

Special Case I: Zero in the first column
We replace the zero with a small positive constant 
ε>0 and proceed as before. We then apply the 
stability criterion by taking the limit as ε→0

Special Case II: Entire row is zero
This indicates that there are complex conjugate pairs. 
If the ith row is zero, we form an auxiliary equation 
from the previous nonzero row:

L+++= −−+ 3
3

1
2

1
11 )( iii ssssa βββ

Where βi are the coefficients of the (i+1)th row in the 
array. We then replace the ith row by the coefficients 
of the derivative of the auxiliary polynomial. 
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Properties of Feedback

Disturbance Rejection:
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Open loop

Closed loop

wArKy o +=



23

ME 343 – Control Systems – Fall 2009 189

Properties of Feedback

Disturbance Rejection:

rwry
A

Kc =+≈⇒>> 0
1

Choose control s.t. for w=0,y≈r

wry
A

Ko +=⇒= 1Open loop:

Closed loop:

Feedback allows attenuation of disturbance without 
having access to it (without measuring it)!!!

IMPORTANT: High gain is dangerous for dynamic response!!!
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Properties of Feedback

Sensitivity to Gain Plant Changes
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Open loop
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Properties of Feedback

Sensitivity to Gain Plant Changes

Let the plant gain be

A

A

T

T

o

o δδ =

AA δ+

o

o

cc

c

T

T

A

A

AKA

A

T

T δδδδ =<<
+

=
1

1

Open loop:

Closed loop:

dA

dT

T

A

AdA

TdT
ST

A ==
/

/
Sensitivity:

Example: 1,
1

1 =
+

= oc T
A

c

T
A S

AK
S

Feedback reduces sensitivity to plant variations!!!
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Steady-state Tracking

The Unity Feedback Case
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)(1
!
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k

k

s
sR

t
k

t
trTest Inputs: k=0: step (position)

k=1: ramp (velocity)

k=2: parabola (acceleration)

Want E(s)/R(s)=0.



25

ME 343 – Control Systems – Fall 2009 193

Steady-state Tracking

The Unity Feedback Case
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Steady State Error:
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Final Value 
Theorem

Type n
System
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Steady-state Tracking
The Unity Feedback Case
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Type (n)

Type 0

Type 1

Type 2

Step (k=0)              Ramp (k=1)           Parabola (k=2)

Input (k)
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Steady-state Tracking

2)()(lim

1)()(lim

0)()(lim

2

0

0

0

==

==
==

→

→

→

nsGsCsK

nsGssCK

nsGsCK

s
a

s
v

s
p

Position Constant

Velocity Constant

Acceleration Constant

n: Degree of the poles of CG(s) at the origin (the number of 
integrators in the loop with unity gain feedback)

• Applying integral control to a plant with no zeros at the 
origin makes the system type ≥ I
• All this is true ONLY for unity feedback systems
• Since in Type I systems ess=0 for any CG(s), we say that 
the system type is a robust property.
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Steady-state Disturbance Rejection

The Unity Feedback Case
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Set r=0. 

Want Y(s)/W(s)=0.
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Steady-state Disturbance Rejection
The Unity Feedback Case

Steady State Output:

Type (n)

Type 0

Type 1

Type 2

Step (k=0)              Ramp (k=1)           Parabola (k=2)

Disturbance (k)

*
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∞ ∞

0

0 0

∞

)(sC
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+)(sR )(sY
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)(sE )(sU
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+

∞<< *0
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PID Controller
PID: Proportional – Integral – Derivative

P Controller:

pKsC =)(
-

+)(sR )(sY
)(sG

)(sE )(sU

.
)()(1

1

)(

)(

,
)()(1

)()(

)(

)(

sGsCsR

sE

sGsC

sGsC

sR

sY

+
=

+
=

)()(),()( sEKsUteKtu pp ==     

)0(1

11

)(1

1
lim)(lim

1
)(

00 GKssGK
sssEe

s
sR

pp
ss

ss +
=

+
==⇒=

→→

Step Reference:

∞→⇔= )0(0 GKe pss
•Proportional gain is high
•Plant has a pole at the origin

True when:

High gain proportional feedback (needed for good tracking) 
results in underdamped (or even unstable) transients.
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PID Controller

P Controller: Example (P_controller.m)
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Underdamped transient for large proportional gain
Steady state error for small proportional gain
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PID Controller
PI Controller:

s

K
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Step Reference:

• It does not matter the value of the proportional gain
• Plant does not need to have a pole at the origin. The controller has it!

Integral control achieves perfect steady state reference tracking!!!
Note that this is valid even for Kp=0 as long as Ki≠0
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PID Controller

PI Controller: Example (PI_controller.m)
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DANGER: for large Ki the characteristic equation has roots in the RHP

0)1(23 =++++ AKsAKss Ip

Analysis by Routh’s Criterion
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PID Controller

PI Controller: Example (PI_controller.m)

Necessary Conditions:

0)1(23 =++++ AKsAKss Ip

0,01 >>+ AKAK Ip

This is satisfied because 0,0,0 >>> Ip KKA
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PID Controller
PD Controller:
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Step Reference:

PD controller fixes problems with stability and damping by adding 
“anticipative” action
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•Proportional gain is high
•Plant has a pole at the origin

True when:
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PID Controller

PD Controller: Example (PD_controller.m)
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The damping can be increased now independently of Kp

The steady state error can be minimized by a large Kp
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PID Controller
PD Controller:
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NOTE: cannot apply pure differentiation.
In practice,
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PID Controller

PID: Proportional – Integral – Derivative
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PID Controller: Example (PID_controller.m)
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PID Controller: Ziegler-Nichols Tuning

• Empirical method (no proof that it works well but 
it works well for simple systems)
• Only for stable plants
• You do not need a model to apply the method
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Class of plants:
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PID Controller: Ziegler-Nichols Tuning

METHOD 1: Based on step response, tuning to 
decay ratio of 0.25.
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Tuning Table:
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PID Controller: Ziegler-Nichols Tuning

METHOD 2: Based on limit of stability, ultimate 
sensitivity method.

uK
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+)(sR )(sY
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)(sE )(sU

• Increase the constant gain Ku until the response 
becomes purely oscillatory (no decay – marginally 
stable – pure imaginary poles)
• Measure the period of oscillation Pu

ME 343 – Control Systems – Fall 2009 210

PID Controller: Ziegler-Nichols Tuning

METHOD 2: Based on limit of stability, ultimate 
sensitivity method.
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Tuning Table:
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The Tuning Tables are the same if you make:
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PID Controller: Ziegler-Nichols Tuning

Actuator Saturates: 
- valve (fully open)
- aircraft rudder (fully deflected)

cu
(Output of the controller)

u
(Input of the plant)
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PID Controller: Ziegler-Nichols Tuning

What happens? 
- large step input in r
- large e
- large uc → u saturates

- eventually e becomes small

- uc still large because the integrator is “charged”

- u still at maximum

- y overshoots for a long time
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PID Controller: Ziegler-Nichols Tuning

Plant with Anti-Windup:

Plant without Anti-Windup:
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PID Controller: Ziegler-Nichols Tuning

In saturation, the plant behaves as:

For large Ka, this is a system with very low gain and 
very fast decay rate, i.e., the integration is turned off.

Saturation/Antiwindup: Example (Antiwindup_sim.mdl)


