ME 343 — Control Systems

Lecture 13
September 21, 2009
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Laplace Transform

Function f(t) of time
Piecewise continuous and exponential order |f (t) < KeP
oo O+ joo

_ _ J
F(s)= ] f(t)e 't CURG))= f)=—= [ E(s)e®ds
0- limit is used to capture transients and discontinuities at t=0

S is a complex variable (c+jw)

There is a need to worry about regions of convergence of
the integral

Units of S are sec1=Hz
A frequency
If f(t) is volts (amps) then F(S) is volt-seconds (amp-seconds)
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Laplace Transform Properties

Linearity: (absolutely critical property)
L{Af(t) + Bf (1)} = AL{fy (1)} + BL{f, (t)} = AFy(s) + BF,(s)

t F(s)
Integration property: L jf(r)dr =T
0

Differentiation property: L{d;it)} =sF(s)- f(0-)

2
LI 9TTOL 2 6y st (0-)— £7(0-)
dt2

L{dmf(t)}:sm F(5)-s™f (0-) = s™2£/(0-) —---— £ (M (0-)
dt™
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Laplace Transform Properties
Translation properties:
s-domain translation: L{e " f(t)}=F(s+a)

t-domain translation: L{f(t—a)u(t—a)}=e*F(s) for a>0

Initial Value Property: lim f(t)= lim sF(s)
Final Value Property: lim f(t) = lim sF(s)
t—oo s—0

If all poles of F(s) are in the LHP
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Laplace Transform Properties

Time Scaling: L{f @=FC)

Multiplication by time: L{tf (t)}:—dZS)

Convolution: L{[ f (D)9t -)dz}=F(5)G(s)

Time product: L{f(t)g(t)}= 21.J‘0_+.jw|: (s)G(s—A)dA
7j do-ie
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Laplace Transform Table

Signal Waveform Transform
impulse s(t) !
step u(t) %
ramp tu(t) Siz
exponential e~ u(t) ﬁ
damped ramp te~%u() (s+iz)2
sine sin(A)u(t) Szfﬂz
cosine cos( A)u(t) ﬁ
damped sine ! sin(A)u(t) (s+a)ﬁz+ﬁ2
. S+o
damped cosine ot cos( A)u(t) W
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Laplace Transform

Algebraic
equation

Differential Laplace
equation transform L

Classical
techniques

Response
signal

Algebraic
techniques

Time domain (t domain)

Inverse Laplace
transform L

Response
transform

The diagram commutes

Same answer whichever way you go
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Solving LTI ODE’s via Laplace Transform

yVra Yy Y+ ray=bu™+b _u™Y+...4+byu

Initial Conditions: y"(0),...,y(0),u™?(0),...,u(0)

k k-1
Recall L{d d‘;k(t)} =sF(s)- 3 f D (0)s’
j=0

S"Y (s) - nf: y - (0)s! +nz_1: a{siY (s)- Iz_ll y(=D (O)Sj] =3 b |:SiU (s)- iz_l:u“‘l‘” (O)Sj:|
= i=0 =0 i=0 =0

n-1 -1 m i-1
(i-1-1) i (i-1-J) i
g g Yay s -y by ut )
Y(S) — bmS + bm—ls toeet b15 + bo U (S) + i=0  j=0 i=0  j=0

s"+a, $"+--+as+a, s"+a, S"++aS+a,

For a given rational U(s) we get Y(s)=Q(s)/P(s)
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Computing Transfer Functions via Laplace Transform

yVra vy Y +ray=b u™Y 4. +bu

Assume all Initial Conditions Zero:

(s"+a, 5"+ +as+ag V() =0, 5"+ +bs+by U (s)
Output ‘/Input
m-1
\Y(s): DS +--+Dbs+b, U(s)—B(S)

= U(s
s"+a, 8"+ +as+a, A(s) ©)

H(s)=Y(S): b, 8"+ + s+
U(s) s"+a,,s"" +---+as+a,
_k (8=2)(-2,)-(5~2,)
(s—p)(s—py)---(s—Py)
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Rational Functions

We shall mostly be dealing with TFs which are
rational functions — ratios of polynomials in S

b,s" +b, 8" +---+bs+b,
as"+a, _s"'+--+as+a,
_ (5-2)(5-2,)(s-2,)
(= p)(s—=py)(s=Pn)
p; are the poles and z; are the zeros of the function

F(s)=

K is the scale factor or (sometimes) gain
A proper rational function has n=m
A strictly proper rational function has n>m

An improper rational function has n<m
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Partial Fraction Expansion - Residues at Simple Poles

Functions of a complex variable with isolated, finite
order poles have residues at the poles

F(S)ZK (S_Zl)(s_zz)'“(s_zm) — kl + k2 +eet kn
(s=p)(s—py)-(5=p,) (s=p) (s=p,) (s—py)

)F(S)= kl(s_ pi)+ kZ(S_ pi)+...+ki +...+M

(s—p) (s—py) (s—py)

(s-p

Residue at a simple pole:  k; =lim(s—p,)F(s)
S—P;
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Partial Fraction Expansion - Residues at multiple poles

= gt
(s—p) (s—p) (s—p) (s—py)

F(S):K(S_Zl)(s_zz)"'(s_zm) k1 n k2 k

Residue at a multiple pole:

L i dr_j r .
("_J-)!Slmpi dsr_j[(s_pi) F(S)} J=1-r

K —

]
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Partial Fraction Expansion - Residues at Complex Poles

Compute residues at the poles lim(s—a)F(s)
S—a

Bundle complex conjugate pole pairs into second-
order terms if you want ... but you will need to be
careful!

(s—a— |B)s—a+ jﬁ)=[sz—2as+(0:2+ﬁ2)]

Inverse Laplace Transform is a sum of complex
exponentials. But the answer will be real.
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Inverting Laplace Transforms in Practice

We have a table of inverse LTs
Write F(s) as a partial fraction expansion

m m-1
F(s):bms +bm_1s i +---+bs+ Dy
a,s" +an_98" 4+ S+ ag
_w 5-7)(s-17)---(5—7m)
(s=p1)(s—p2)---(s—pn)
2 a 31 a3 a33 q
- + + + + ot
(5-p) (-P2) (5=P3) (s-p3)® (s-pa)® (- Pg)

Now appeal to linearity to invert via the table
Surprise!

Nastiness: computing the partial fraction expansion is best
done by calculating the residues
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Not Strictly Proper Laplace Transforms

s3+6s2+125+8

52+4s+3

Convert to polynomial plus strictly proper rational function
Use polynomial division

Find the inverse LT of F(s)=

S+2

2

F(s)=s+2+
S“+4s+3

s+1 s+3
Invert as normal

f(t)= {diim 25(t) +0.5¢ " +0.5e_3t}u(t)
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Impulse Response
Dirac’s delta: j:u(r)5(t —r)dz=u(t)

Integration is a limit of a sum

U

u(t) is represented as a sum of impulses
By superposition principle, we only need unit impulse response

h(t—’[) Response at t to an impulse applied at 7 of amplitude u(7)

System Response: u(t) —— h +—— y()

y(t) = jo""u(r)h(t —7)dr
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Impulse Response

t-domain: u(t) —— h y(t)
Impulse response
y() = |, u@h(t-2)dz u(H) =4(t) = y(© =h(»

The system response is obtained by convolving the input with
the impulse response of the system.

Convolution: L{j:u(r)h(t—r)dr}:H(s)U(s)

s-domain: U(s)

Y(s)
Impulse response

Y(s)=H(S)U(s) u(t)=8@t)=U(s)=1=Y(s)=H(s)

The system response is obtained by multiplying the transfer
function and the Laplace transform of the input.
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H

Block Diagrams

Series: — G, — G, —
G=GG,
Gl
Parallel: }*
1 G, :
G=G,+G,
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Block Diagrams
Negative Feedback:

R Reference input
= _E(S G ]‘C(S) E=R-B Error signal
B(s) C=GE Output
H B=HC Feedback signal
C G
C=GR-GHC= (1+GH)C=GR=—=———
R (1+GH)
E 1
E=R-HGE= (l+GH)E=R=>—-=—"——
R (1+GH)

Rule: Transfer Function=Forward Gain/(1+Loop Gain)
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Block Diagrams
Positive Feedback:

R Reference input
= +E(s G ) E=R+B Error signal
B(s) C=GE Output
H B=HC Feedback signal
C G
C=GR+GHC=(1-GH)C=GR=—-=———
R (1-GH)
E 1
E=R+HGE= (1-GH)E=R=>—-—=———
R (1-GH)

Rule: Transfer Function=Forward Gain/(1-Loop Gain)
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Block Diagrams

Moving through a branching point:

R(s) G C(s) R(s), G C(s)
B
(s) E’ﬂ 1/G

Moving through a summing point:

R(s) + G C(s) = RO & s C)
B(s) G
B(s) T
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Mason’s Rule
H 4
H 6
U(s) + p : T Y O
+ Hl H 2 + H 3
H H.

Signal Flow Graph
H4

nodes branches
N e
u(s) @ H, @ H, @Llj:j@) Y (s)

N

Hg H;
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Mason’s Rule

Path: a sequence of connected branches in the direction of the
signal flow without repetition

Loop: a closed path that returns to its starting node

Forward path: connects input and output

_Y@) _1
G(S)_U(S) _AZGiAi

G; =gain of the ith forward path
A =the system determinant
=1-"(allloop gains)
+ Z (gain products of all possible two loops that do not touch)
- Z(gain products of all possible three loops that do not touch)

A; =value of A for the part of the graph that does not touch the ith forward path
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Time Response vs. Poles

1 _
Real pole: H(s)=——=h(t)=e" Impulse
. S+o Response
' \T | ' [ |
0.8 \ == | 0>0  stable
o _._. I . et _ Seiaat. I
- i I o<0 Unstable
= .
;‘{ r) - . — :_.. ———
0.4 [— I [ 1 3 |
RN e ;
- - I \ 1 s T— T s 1
02—+ \\ == ' 1=— Time Constant
e .
. — ~ 4 0
0 1.0 2.0 3.0 4.0
T Time (sec)
t=r @
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Time Response vs. Poles

Real pole:

His)=—2— =h{t)=ce® Impulse
S+0

Response
T=— Time Constant
o
o1 _
Y(8)=— == y(t)=1-e® Step
S+0S Response
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Time Response vs. Poles

2
1)
Complex poles: H(s)=— n ; Impulse
S°+ 20w, s+ @) Response
_ @,
- 2 2 2
(s+¢w,f +at1-¢?)
@, . Undamped natural frequency N 4 Im(s)
¢ : Damping ratio X
2 e
a) )
H(s) = 1 _
(s+o+jw,)Ns+o-jw,) “
— (0,3 :/ i‘RC(sa
T N2 2 | .
(s+0) +w; oo o
| i
o=Cw, 0, =w1-{° Je s
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Time Response vs. Poles
Complex poles:
2

H(s) = % h(t) =
(s 0

(s+¢w,) + @}t

hir

c>0

o<0

0 5 10 15 20 25 30

Time (sec)
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J1-¢7

e "sin(w,t)

Impulse
Response

Stable
Unstable

171

Time Response vs. Poles
Complex poles:

_— a)n — a)n
AP i e I

1.0

0.8
0.6

0.4 |- 11
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J1=¢72

e " sin(a,t)

Impulse
Response

172
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Time Response vs. Poles
Complex poles:

2
@ 1 ot o .
Y(s)= n ——>y(t)=1-e"| cos(awyt)+—sin(aw,t
(s) (S+§’a)n)2+wf(1—§2)s y(t) |: (eoyt) o, (o0, )}
20 —
1.8 - | él_ 0 Step
1.6 - 33 Response
1.4 1 ()_'5-
0.6
1.2 b i
¥ L0
0.8
0.6 ‘K;’;g o1
0.4 A\NH
0.2 ]
0
0 2 4 6 b 10 12
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Time Response vs. Poles
a)Z
Complex poles: H(s)=— f 5
s+ 2{w,s+ o
_ @,
(s+¢a,f +afl-¢)
CASES:
¢=0: S a)r? Undamped
§<1Z(S+§a)n)2 +a)§(l—§2) Underdamped
{=1:(s+ @, )2 Critically damped

g>1: [S+(§+\/m)a)nls+(é’_ é’z _1)a,n] Overdamped
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Time Response vs. Poles

4 Im(s)

STABLE UNSTABLE

‘ X b4

LLHP RHP
J& -

Re(s)
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Time Domain Specifications

0.1
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Time Domain Specifications

1- The rise time t, is the time it takes the system to
reach the vicinity of its new set point
2- The settling time t, is the time it takes the system

transients to decay
3- The overshoot Mp is the maximum amount the

system overshoot its final value divided by its final

value
4- The peak time t, is the time it takes the system to

reach the maximum overshoot point

1.

‘tp:#2 tr578

a)n l—g a)n
I

M, =e "¢ t5:4—'6

o,
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Time Domain Specifications

Design specification are given in terms of

t,t,, Mt

These specifications give the position of the poles

@, { = 0,a,

Example: Find the pole positions that guarantee

t, <0.6sec,M, <10%,t, <3sec
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Time Domain Specifications

Additional poles:

1- can be neglected if they are sufficiently to the left
of the dominant ones.

2- can increase the rise time if the extra pole is within
a factor of 4 of the real part of the complex poles.

Zeros:

1- a zero near a pole reduces the effect of that pole in
the time response.

2- a zero in the LHP will increase the overshoot if the
zero is within a factor of 4 of the real part of the
complex poles (due to differentiation).

3- a zero in the RHP (nonminimum phase zero) will
depress the overshoot and may cause the step
response to start out in the wrong direction.
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Stability
Y(s) b,s"+b,,s""+--+bs+b,
R(s) s"+a _s"'+--+as+a,
Y (s) _K (s—z)(s—2,)---(s—2,)
R(s)  (s=p)(s—py)-(s—Py)
Y(S): kl + k2 4ot I(n
R(s) (s—p) (s—py) (s=pn)

Impulse response:

RS) =1 Y ()= 4+ K Ly K

(s—p) (s—py) (s—pn)

y(t) =ke™ +k,.eP +---+ ke
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Stability

y(t) = ke +keP +---+k e’
We want: ep‘tt_)—w>0 Vi=1...n

Definition: A system is asymptotically stable (a.s.) if

Re{p}<0 Vi
Characteristic polynomial: ~ a(s)=s"+a,,s"" +:--+a,5+8a,
Characteristic equation: a(s)=0
ME 343 - Control Systems — Fall 2009 181
Stability

Necessary condition for asymptotical stability (a.s.):
a >0 Vi

Use this as the first test!

If any a;<O, the the system is UNSTABLE!
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Routh’s Criterion

Necessary and sufficient condition
Do not have to find the roots p;!

Routh’s Array:

blzaiaz_as,

Depends on whether
N is even or odd

1
_ba-ap, _ba-ab

a &

b by

dlzcibz_blcz d2=C1b3_b1C3’

s" 1 a a, -

n-1 > an
S & 8 & -

-2
s"C b b by
Sn_3 Cl CZ CS

-4
s d, d, 5

0

S an ———

ME 343 - Control Systems — Fall 2009
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Routh’s Criterion

How to remember this?

Routh’s Array:

S my, My My
n-1
S My My, My,
n-2
S My My, Mgy
n-3

ME 343 - Control Systems — Fall 2009

m ; =85 5,
M, ; =ay;4,

M1 My

Mig1 Mg

mlyJ =

M;_14

,Vi>3
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Routh’s Criterion

The criterion:

e The system is asymptotically stable
if and only if all the elements in the first
column of the Routh’s array are positive

e The number of roots with positive real

parts is equal to the number of sign

changes in the first column of the Routh

array

ME 343 - Control Systems — Fall 2009
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Routh’s Criterion

Determine the range of K over which the system is

stable

Y (s)

R(s) - T K G (S)

ME 343 - Control Systems — Fall 2009
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Routh’s Criterion

Special Case |: Zero in the first column

We replace the zero with a small positive constant
€>0 and proceed as before. We then apply the
stability criterion by taking the limit as ¢—0

Special Case Il: Entire row is zero

This indicates that there are complex conjugate pairs.
If the ith row is zero, we form an auxiliary equation
from the previous nonzero row:

a(s)= s+ B8+ s+

Where g, are the coefficients of the (i+1)th row in the
array. We then replace the ith row by the coefficients
of the derivative of the auxiliary polynomial.
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Properties of Feedback

Disturbance Rejection:

Open loop

ivi

r K, A — y
y=K,Ar+w

Closed loop W

r— K. A 5 y
: K A 1
y= r+ w
1+KA 1+K.A
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Properties of Feedback
Disturbance Rejection:
Choose control s.t. for w=0,y=r
Open loop: KO:'1A:> y=r+w
Closed loop: K, >>i:> y=r+0w=r

Feedback allows attenuation of disturbance without
having access to it (without measuring it)!!!

IMPORTANT: High gain is dangerous for dynamic response!!!
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Properties of Feedback

Sensitivity to Gain Plant Changes

Open loop W
r— 4 K, A L y

Closed loop

F—@— K, A 5 y
TC :(y) = 7AKC
r). 1+AK,
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Properties of Feedback

Sensitivity to Gain Plant Changes

Let the plant gain be A+AA

Open loop: 5r° —5—A

P b T, A
Closed IOOp: i:% 1 <<%: éTO
T, A1+ AK, A T,

Feedback reduces sensitivity to plant variations!!!

sensitivity: g7 dT/T _AdT
dA/A T dA

Example: s;c = 1 ,SI\" =1
1+ AK,
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Steady-state Tracking

The Unity Feedback Case

R(s) . T E(s) c(s) U(s) G(s)

want E(S)/R(s)=0. E(S) _ 1
R(s) 1+C(s)G(s)

Y(s)

t* -
Test Inputs: r(t) :El(t) k=0: step (position)
Z-I. k=1: ramp (velocity)
R(s) = Skt k=2: parabola (acceleration)

ME 343 - Control Systems — Fall 2009
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Steady-state Tracking

. T
The Unity Feedback Case S;’fé;
RES) + e ECS) G,(s) Y(s)
X g"
G.(s 1
cs)6(s) =) Es)=— L1 _R(s),R(S)=ns
n G, (s) Ch
1+
Steady State Error: S
Final Value
Theorem
. . . 1 1. s" 1. sk
e. =lime(t)=limsg(s) =lims ————=lim——M— =lim——
S e ® s—0 (5) 50 4 G,(s) skt soog" +G,(s) sk s—o0g" +G, (0)
Sn
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Steady-state Tracking

The Unity Feedback Case ST;/;Z:;

Gy (s)” Y(s)

R(s) + @ E(s)
g Sn ] Sn—k
€ = lim—
s-05" + G, (0)

Steady State Error:

Input (K)
Type (N) Step (k=0) Ramp (k=1) Parabola (k=2)
1 1 1 _
Type 012G ) TLimCE)G() 14K,
1 1 1
Type 1 0 G,(0) limsC(5)G(s) K, °°
Type 2 - rt_ 1
yp 0 0 G,(0)  ImsC()6(s) K,
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Steady-state Tracking
Kp = Li_r)rg)C(s)G(s) n=0 Position Constant
K, = Iing sC(s)G(s) n=1 Velocity Constant
Ka =lim SZC(S)G(S) n=2 Acceleration Constant
s—0

Nn: Degree of the poles of CG(S) at the origin (the number of
integrators in the loop with unity gain feedback)

= Applying integral control to a plant with no zeros at the
origin makes the system type > |

e All this is true ONLY for unity feedback systems

= Since in Type | systems e,=0 for any CG(S), we say that
the system type is a robust property.
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Steady-state Disturbance Rejection

. w(t) = L1t)
The Unity Feedback Case k!

W(s) W(s)=ﬁ
C(s) U—(Sil— G(s)

R(S) + e E(5)

'Y (s)

Set r=0.
Want Y(s)/W(s)=0.

Y(s) _  G(s)
W(s) 1+C(s)G(s)

=T(s)=5"Ty(s)

Steady State Error: €=r-y=-y  Final Value

/ Theorem
1 n

. . . . S
~e = Yy, = iM y() = imsY () = IimsT (s) o = i T, (5)
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Steady-state Disturbance Rejection
The Unity Feedback Case

W (s)
R(S) + = E(s) C(s) U(s)i+ G(s) Y (s)
Steady State Output:
Disturbance (K)
Type (M) step (k=0) Ramp (k=1) Parabola (k=2)
Type O * oo oo
Type 1 0 * oo
Type 2 0 0 *
O<*<oo
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PID Controller
PID: Proportional — Integral — Derivative
P Controller:

Y6 _ CEBE) RE) 4@E6) )| crak. YO g Y (s)
R(s) 1+C(s)G(s)’ g i

E() 1

R(s) 1+C(s)G(s)’

ut)=K.e(t), U(s)=K,E(s)

Step Reference:

R(S)=}:eSS =limsE(s)=lims 1_ 1
S s=0 =0 1+ K, G(s)s 1+K,G(0)

— . *Proportional gain is high
& =0 KPG(O) —> o True when: =Plant has a pole at the origin

High gain proportional feedback (needed for good tracking)
results in underdamped (or even unstable) transients.
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PID Controller

P Controller: Example (P_controller.m)

R(S) + e E(5) K U (s) A Y (s)

G s?4+s5+1

Yis)  K,G() KA
R(s) 1+K,G(s) s’+s+(1+K,A)

& =1+ K, A 1 1
=

20w, =1 20, 2[1+K,A Kooe

v Underdamped transient for large proportional gain
v Steady state error for small proportional gain

>0
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PID Controller

PI Controller:

Y(s) _ C(s)G(s) R(s) +mE(s) _ K, [ U(s)
R(s) 14C(5)G(s)’ CE=Ky+75
E() 1

R(s) 1+C(s)G(s)’

Y (s)

G(s)

u(t) = K e()+K, je(r)dr, U(s) :(Kp +IZ')E(S)

Step Reference:
1 1 1

“=lim
1+(Kp+K'jG(s)S H°1+(KP+KJG(s)

I
S S

R(S)= L =>e, = limsE(s) =lims
S S

s—0

=0

« |t does not matter the value of the proportional gain
= Plant does not need to have a pole at the origin. The controller has it!

Integral control achieves perfect steady state reference tracking!!!
Note that this is valid even for K;=0 as long as K;z0
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PID Controller

Pl Controller: Example (Pl_controller.m)

R(s) . T E(s) Kp+% U(s) gy +AS+1 Y (s)

K,
Y(s) (Ko jG(S) (KK A
R(s) 1+[K N )G(s) $*+5%+(1+ K, A)s+ K A

DANGER: for large K; the characteristic equation has roots in the RHP
$®+s°+(1+K,A)s+ K A=0

Analysis by Routh’s Criterion
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PID Controller
Pl Controller: Example (PIl_controller.m)
$*+s*+(1+K,A)s+K,A=0

Necessary Conditions: 1+K,A>0,K,A>0

This is satisfied because A>0,K,>0,K, >0

Routh’s Conditions:

S 1 1+ K, A 1+K,A-K,A>0
s 1 K, A I
1
st 1+K A-K/A K|<Kp+1
s K,A A
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PID Controller
PD Controller:

Y(s) _ C(5)G(s)  R(s) + @ E(S)

— u(s) Y (s)
R(s) 1+C(s)G(s)’ g C(s)=K,+Kps G(s) ,
B9 1
R(s) 1+C(s)G(s)’

u(t) = Koe(t)+Kp dz(tt) U(s)=(K, +KyS)E(s)
Step Reference:

R(s) = S = e, = limsE(s) = lims 1 1_ 1
s 550 =0 1+ (K, +Kps)G(s) s 1+K,G(0)

— . =Proportional gain is high
;=0 KPG(O) — o True when: =Plant has a pole at the origin

PD controller fixes problems with stability and damping by adding
“anticipative” action
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PID Controller

PD Controller: Example (PD_controller.m)

R(S) - E(s) C(s)=K,+Kys U(s) A Y(s)
T PP s2+s+1

Y(s)_ (K, +KpsJB(s) _ AlK, +Kps)
R(s) 1+(K,+Kps)B(s)  s2+(@1+KpA)s+(1+K,A)
of =1+ K A

LKA LKA

-
20w, =1+ K A 20, 2,1+ K,A

v The damping can be increased now independently of Kp
v’ The steady state error can be minimized by a large Kp
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PID Controller
PD Controller:

'Y (s)

Y() _ COIGE) R @ EE) Jogy ok +Ks| YO G(s)
R(s) 1+C(s)G(s)’ s PP

E)_ 1

R(s) 1+C(s)G(s)’

de(t)

u(t) =Ke(t)+Kp ot

NOTE: cannot apply pure differentiation.

In practice,
Kps
is implemented as
Kps
T5Ss+1

ME 343 - Control Systems — Fall 2009

, U(s)= (Kp + KDs)E(s)
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PID Controller

PID: Proportional — Integral — Derivative

R(s) +TE(s) Kp[lJ’TlsJ’TDSJ U (s) G Y (s)

d
ut)=K, e(t)+T1I'([e(r)dr+TD de(t)} K, =|'<r,p’KD =

dt

u(s) (s) =K, 1+i+TDs
E(s) T,s

PID Controller: Example (PID_controller.m)
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PID Controller: Ziegler-Nichols Tuning

e Empirical method (no proof that it works well but
it works well for simple systems)
e Only for stable plants

e You )do not need a model to apply the method
y(r

; Slope R = é = reaction rate
Class of plants:

Y(s) Ke™*
U(s) w+1
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PID Controller: Ziegler-Nichols Tuning

METHOD 1: Based on step response, tuning to
decay ratio of 0.25.

4 (1)

Tuning Table:

1+ Period p- Kp — 7
td
PD: K,=097 T, =1
0.25 ty 0.3
/\*| PID: K,=127,T =2t,,T, =05t
v — t
N~

d
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PID Controller: Ziegler-Nichols Tuning

METHOD 2: Based on limit of stability, ultimate
sensitivity method.

R(s) + T E(s) K u(s) G(s) Y (s)

« Increase the constant gain K, until the response

becomes purely oscillatory (no decay — marginally
stable — pure imaginary poles)

= Measure the period of oscillation P,
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PID Controller: Ziegler-Nichols Tuning

METHOD 2: Based on limit of stability, ultimate
sensitivity method.

(1) Tuning Table:

f\ /\ /\ P K, =05K,
D: K, =045K,T, =t
PID: K, =06K,T, =" ,TD=P

Tu
_______ uw 2

The Tuning Tables are the same if you make:

T
K, =2 R =4,
d
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PID Controller: Ziegler-Nichols Tuning

Actuator Saturates:
- valve (fully open)
- aircraft rudder (fully deflected)

u
(Input of the plant)

uc
(Output of the controller)
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PID Controller: Ziegler-Nichols Tuning

Y (s)

RS @E6) | K |U(s) } ue) | g
I s

What happens?

- large step input in r

- large €

- large U, — U saturates

- eventually € becomes small

- U, still large because the integrator is “charged”
- U still at maximum

- Y overshoots for a long time
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PID Controller: Ziegler-Nichols Tuning
Plant without Anti-Windup:

kp
u
+ 4 i
+ : BRNETR ;
R i > ':"n . > L8 Plant oy
§ ; | /} Hmax U,

Plant with Anti-Windup:

€ O—4 —
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PID Controller: Ziegler-Nichols Tuning

In saturation, the plant behaves as:

kPS + kI

e O—
S+Kakl

For large K,, this is a system with very low gain and
very fast decay rate, i.e., the integration is turned off.

Saturation/Antiwindup: Example (Antiwindup_sim.mdl)
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