

ME 343 – Control Systems

Lecture 08
September 9, 2009

Time Domain Specifications

Time Domain Specifications

- 1- The **rise time** t_r is the time it takes the system to reach the vicinity of its new set point
- 2- The **settling time** t_s is the time it takes the system transients to decay
- 3- The **overshoot** M_p is the maximum amount the system overshoots its final value divided by its final value
- 4- The **peak time** t_p is the time it takes the system to reach the maximum overshoot point

$$t_p = \frac{\pi}{\omega_n \sqrt{1-\zeta^2}} \quad t_r \cong \frac{1.8}{\omega_n}$$
$$M_p = e^{-\frac{\pi \zeta}{\sqrt{1-\zeta^2}}} \quad t_s = \frac{4.6}{\zeta \omega_n}$$

Time Domain Specifications

Design specification are given in terms of

$$t_r, t_p, M_p, t_s$$

These specifications give the position of the poles

$$\omega_n, \zeta \Rightarrow \sigma, \omega_d$$

Example: Find the pole positions that guarantee

$$t_r \leq 0.6 \text{ sec}, M_p < 10\%, t_s \leq 3 \text{ sec}$$

Time Domain Specifications

Additional poles:

- 1- can be neglected if they are sufficiently to the left of the dominant ones.
- 2- can increase the rise time if the extra pole is within a factor of 4 of the real part of the complex poles.

Zeros:

- 1- a zero near a pole reduces the effect of that pole in the time response.
- 2- a zero in the LHP will increase the overshoot if the zero is within a factor of 4 of the real part of the complex poles (due to differentiation).
- 3- a zero in the RHP (nonminimum phase zero) will depress the overshoot and may cause the step response to start out in the wrong direction.