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Dynamic Model
MECHANICAL SYSTEM: αIT = Newton’s law
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Open loop simulations: pend_par.m, pendol01.mdl
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Linearization
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Taylor Expansion
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Linearization

( )uxfx ,=&Dynamic System:

( )oo uxf ,0 = Equilibrium

Denote oo uuuxxx −=−= δδ ,

( )uuxxfx oo δδδ ++= ,&

Taylor Expansion
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Linearization
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Linearization

What happens around θ=0?

By Taylor Expansion:
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Laplace Transform
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Transfer function
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Laplace Transform

Characteristic Equation
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Solution of the ODE

What is the solutions y(t)?00 2 =++⇒= y
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real(λ1,λ2)<0 ⇒ STABLE SYSTEM

We use feedback control for PERFORMANCE
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Characteristic Equation

The dynamics of the system is given by the roots of the denominator 
(poles) of the trasfer function
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Linearization

What happens around θ=π?

By Taylor Expansion:
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Laplace Transform
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Transfer Function
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Laplace Transform

Characteristic Equation
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Solution of the ODE

What is the solutions y(t)?00 2 =−+⇒= y
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real(λ1)>0 or real(λ2)>0 ⇒ UNSTABLE SYSTEM!!!

We use feedback control for STABILITY AND PERFORMANCE
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Characteristic Equation

The dynamics of the system is given by the roots of the denominator 
(poles) of the trasfer function
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Closed-loop Control
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Closed loop simulations: pid.m
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Closed-loop Control
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We can place the poles at the desired 
location to obtain the desired dynamics

CLASSICAL CONTROL (ME 343)

Closed loop simulations: pend_par.m, pid.m
pendclPID01.mdl


