

ME 343 – Control Systems

Lecture 01
August 24, 2009

ME 343 Control Systems

Lecturer: Prof. Eugenio Schuster,
Mechanical Engineering and Mechanics
Office: PL 550D, Email: schuster@lehigh.edu, Phone: 610-758-5253
Office hours: Monday/Wednesday/Friday after class or by arrangement

Web page: <http://www.lehigh.edu/~eus204/Teaching/ME343/ME343.html>

E-mail list: Make sure to be in the mailing list!!!

Class time: Monday/Wednesday/Friday 11:10AM to 12:00PM, Mohler 110

What do I expect you to know?

Prerequisites: ME 242 or ME 245 or ECE 125 (MATH 205 + MECH 102)

Mathematics

Solution of sets of linear equations

$Ax=b$ equations for vector x given matrix A and vector b

Solution of constant coefficient linear ordinary differential equations

Laplace transform introduction

Initial conditions and forced response

Complex analysis

Numbers, poles, zeros

Dynamic Systems

First-order vector ordinary differential equations

Linearity and linearization

Laplace transform

Transfer function and frequency response

I will help you as we go by doing examples

which should refresh your memory

ME 343 – Control Systems – Fall 2008

3

How will the course be examined?

Weekly homework (ten assignments) 15%

Three in-class midterms 55%
(See schedule on web page)

Final exam 30%
(See schedule on web page)

Homework:

Hand in one week before due date

NO lateness (must be returned on due date **before** class)

Homework assignments will be graded based on level of effort

Solutions of ALL the problems on the web site

Solutions have to be comprehensible to be marked highly

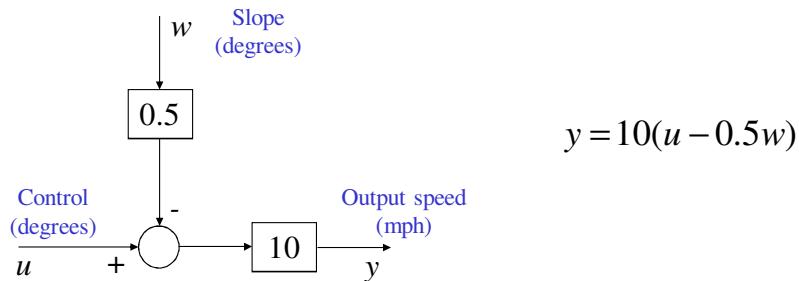
Follow the Homework Guidelines posted in the web page

ME 343 – Control Systems – Fall 2008

4

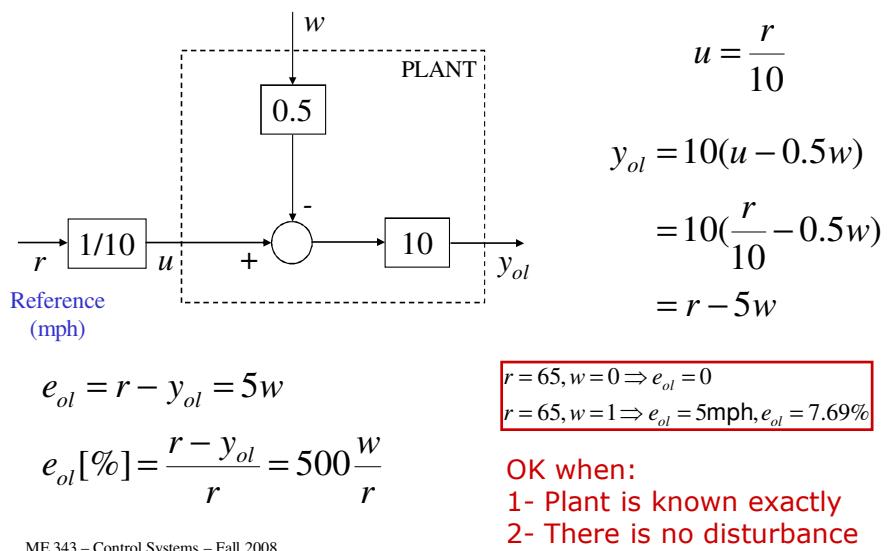
What is control?

For any analysis we need a mathematical MODEL of the system

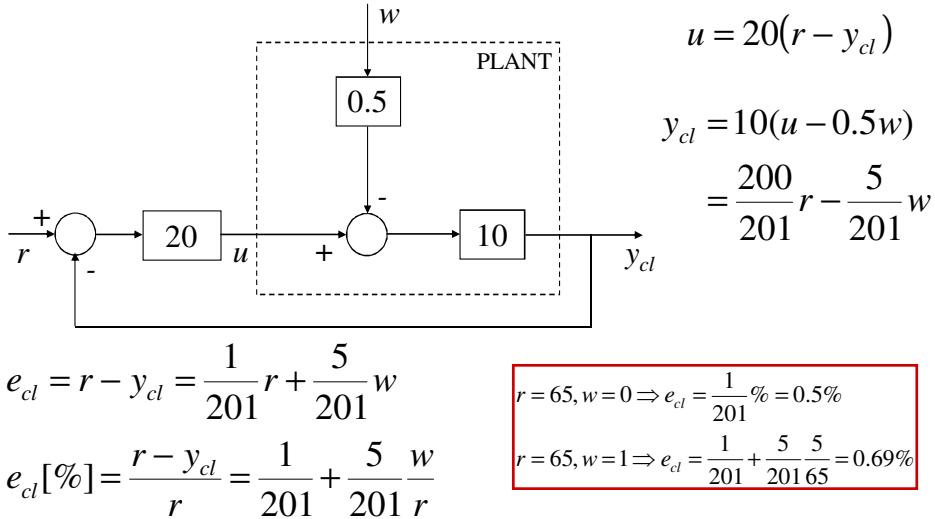

Model → Relation between gas pedal and speed:

10 mph change in speed per each degree rotation of gas pedal

Disturbance → Slope of road:


5 mph change in speed per each degree change of slope

Block diagram for the cruise control plant:


What is control?

Open-loop cruise control:

What is control?

Closed-loop cruise control:

ME 343 – Control Systems – Fall 2008

7

What is control?

Feedback control can help:

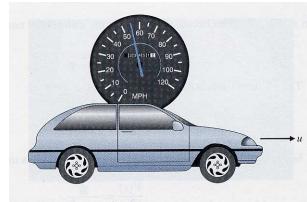
- reference following (tracking)
- disturbance rejection
- changing dynamic behavior

LARGE gain is essential but there is a STABILITY limit

"The issue of how to get the gain as large as possible to reduce the errors due to disturbances and uncertainties without making the system become unstable is what much of feedback control design is all about"

First step in this design process: DYNAMIC MODEL

ME 343 – Control Systems – Fall 2008


8

Dynamic Models

Real world is more complex than static maps → We need Dynamic Models

MECHANICAL SYSTEMS:

$$F = ma \quad \text{Newton's law}$$

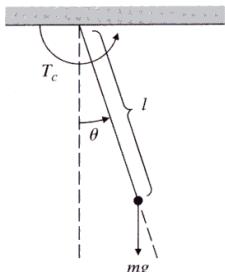
$$m\ddot{x} = u - b\dot{x}$$

$v = \dot{x}$ velocity

$a = \dot{v} = \ddot{x}$ acceleration

$$\dot{v} + \frac{b}{m}v = \frac{u}{m} \xrightarrow{\text{Laplace Transform}} \frac{V_o}{U_o} = \frac{1/m}{s + b/m} \quad \text{Transfer Function}$$

$$\frac{d}{dt} \rightarrow s$$


ME 343 – Control Systems – Fall 2008

9

Dynamic Models

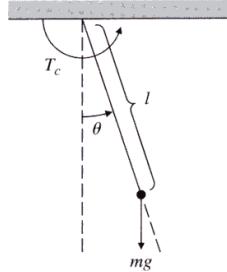
MECHANICAL SYSTEMS:

$$F = I\alpha \quad \text{Newton's law}$$

$$ml^2\ddot{\theta} = -lmg \sin \theta + T_c$$

$\omega = \dot{\theta}$ angular velocity

$\alpha = \dot{\omega} = \ddot{\theta}$ angular acceleration


$I = ml^2$ moment of inertia

$$\ddot{\theta} + \frac{g}{l} \sin \theta = \frac{T_c}{ml^2} \xrightarrow{\sin \theta \approx \theta} \ddot{\theta} + \frac{g}{l} \theta = \frac{T_c}{ml^2} \quad \text{Linearization}$$

ME 343 – Control Systems – Fall 2008

10

Dynamic Models

$$\ddot{\theta} + \frac{g}{l} \theta = \frac{T_c}{ml^2}$$

Reduce to first order equations:

$$x_1 = \theta \quad \dot{x}_1 = x_2$$

$$x_2 = \dot{\theta} \quad \dot{x}_2 = -\frac{g}{l} x_1 + \frac{T_c}{ml^2}$$

$$x \equiv \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, u \equiv \frac{T_c}{ml^2} \Rightarrow \dot{x} = \begin{bmatrix} 0 & 1 \\ -\frac{g}{l} & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

State Variable Representation

$$\text{General case: } \dot{x} = Fx + Gu$$

$$y = Hx + Ju$$

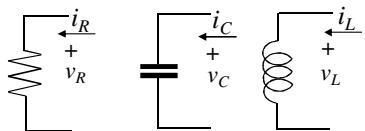
ME 343 – Control Systems – Fall 2008

11

Dynamic Models

ELECTRICAL SYSTEMS:

Kirchoff's Current Law (KCL):


The algebraic sum of currents entering a node is zero at every instant

Kirchoff's Voltage Law (KVL)

The algebraic sum of voltages around a loop is zero at every instant

Resistors:

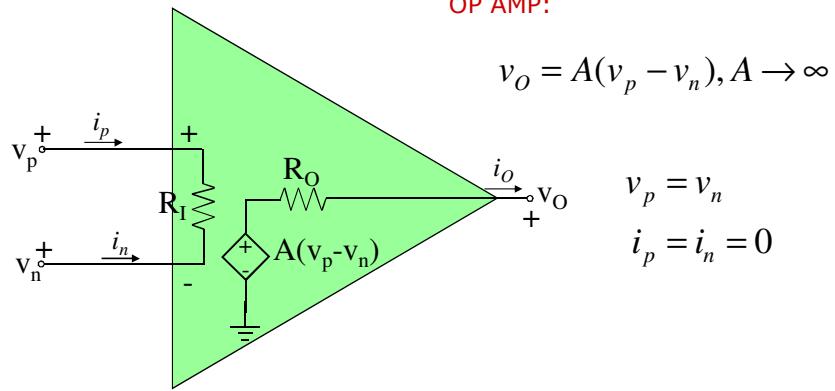
$$v_R(t) = R i_R(t) \Leftrightarrow i_R(t) = G v_R(t)$$

Capacitors:

$$i_C(t) = C \frac{dv_C(t)}{dt} \Leftrightarrow v_C(t) = \frac{1}{C} \int_0^t i_C(\tau) d\tau + v_C(0)$$

Inductors:

$$v_L(t) = L \frac{di_L(t)}{dt} \Leftrightarrow i_L(t) = \frac{1}{L} \int_0^t v_L(\tau) d\tau + i_L(0)$$


ME 343 – Control Systems – Fall 2008

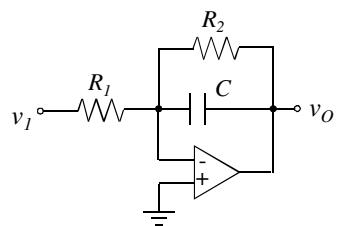
12

Dynamic Models

ELECTRICAL SYSTEMS:

OP AMP:

To work in the linear mode we need FEEDBACK!!!


ME 343 – Control Systems – Fall 2008

13

Dynamic Models

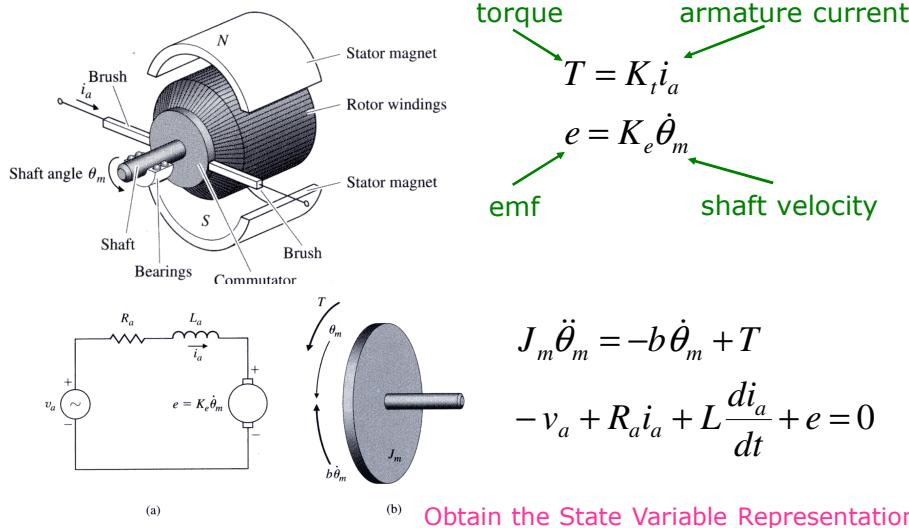
ELECTRICAL SYSTEMS:

KCL:

$$\frac{dv_O}{dt} = \frac{1}{R_2 C} v_O - \frac{1}{R_1 C} v_I$$

$$R_2 = \infty \text{ (OC)} \Rightarrow v_O(t) = v_O(0) - \frac{1}{R_1 C} \int_0^t v_I(\mu) d\mu$$

$$v_I \rightarrow \boxed{K} \rightarrow \boxed{\int} \rightarrow v_O \rightarrow \quad K = -\frac{1}{RC}$$


Inverting integrator

ME 343 – Control Systems – Fall 2008

14

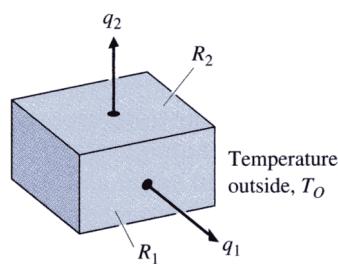
Dynamic Models

ELECTRO-MECHANICAL SYSTEMS: DC Motor

ME 343 – Control Systems – Fall 2008

15

Dynamic Models


HEAT-FLOW:

Heat Flow Temperature Difference

$$q = \frac{1}{R} (T_1 - T_2)$$

$$\dot{T} = \frac{1}{C} q$$

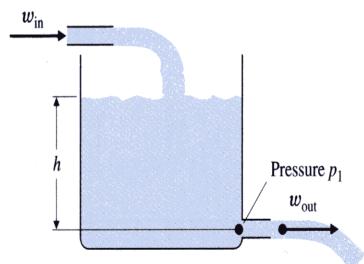
Thermal capacitance Thermal resistance

$$\dot{T}_I = \frac{1}{C_I} \left(\frac{1}{R_1} + \frac{1}{R_2} \right) (T_o - T_I)$$

ME 343 – Control Systems – Fall 2008

16

Dynamic Models


FLUID-FLOW:

Mass rate

Mass Conservation law

Inlet mass flow

Outlet mass flow

$$\dot{m} = \rho A \dot{h} \Rightarrow \dot{h} = \frac{1}{\rho A} (w_{in} - w_{out})$$

A: area of the tank
 ρ : density of fluid
 h : height of water

ME 343 – Control Systems – Fall 2008

17

ME 343 – Control Systems

Model Representation \longleftrightarrow Control Technique

Spatial Dependence	Lumped parameter system $f = f(t)$ Ordinary Diff. Eq. (ODE)	Distributed parameter system $f = f(t, x)$ Partial Diff. Eq. (PDE)
Linearity	Linear	Nonlinear
Temporal Representation	Continuous-time	Discrete-time
Domain Representation	Time	Frequency

ME 343 – Control Systems – Fall 2008

18

ME 343 – Control Systems

Topics covered:

Continuous Time Control

Classical Control (Transfer Function – Frequency Domain)

Modeling. ODEs. Linearization.
Laplace transform. Transfer functions.
Block diagrams. Mason's Rule.
Time response specifications.
Effects of zeros and poles.
Stability via Routh-Hurwitz.
Feedback: Disturbance rejection, Sensitivity, Steady-state tracking.
PID controllers and Ziegler-Nichols tuning procedure.
Actuator saturation and integrator wind-up.
Time Delays
Root locus.
Frequency response--Bode and Nyquist diagrams.
Stability Margins.
Design of dynamic compensators.

Modern Control (State Space – Time Domain)

Discrete-time Control

ME 343 – Control Systems – Fall 2008

19

ME 343 – Control Systems

Text: *Feedback Control of Dynamic Systems*,
5th Edition, G.F. Franklin, J.D. Powell and A. Emami-Naeini
Prentice Hall 2006.

We will work through Chapters 1-8 in order

ME 343 – Control Systems – Fall 2008

20

What is beyond ME 343 – Control Systems?

ME 389 – CONTROL SYSTEMS LABORATORY (Spring)

ME 350 – ADVANCED TOPICS IN CONTROLS (Spring)

ME 310 PROJECTS

CONTROL EXPERIMENTS

Controls Lab Upgrade

Wind Tunnel

- Inverted Pendulum System

CONTROL PROJECTS

- Microprocessor Chip Temperature Control
- Stabilization of Neoclassical Tearing Modes in Fusion Plasmas via Extremum Seeking
- Tokamak Plasma Equilibrium Controllability Limitations Due to Delays

ROBO-SOCER

ME 343 – Control Systems – Fall 2008

21

2008/2009 ME 310 Projects

CONTROL EXPERIMENTS

Controls Lab Upgrade

- Design and Construction of Flexible Inverted Pendulum System
- Setup of 3 DOF (degree-of-freedom) helicopter
- Setup of magnetic levitation system
- Design and construction of remotely operated experiments

Wind Tunnel Upgrade

- Design and construction of feedback controller for wing drag minimization

CONTROL PROJECTS

- Advanced control design

ROBO-SOCER

- Global mapping system (vision systems)
- High-level planning system (AI)
- Holonomic drivetrain and chassis design

ME 343 – Control Systems – Fall 2008

22