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ME242 – MECHANICAL ENGINEERING SYSTEMS

LECTURE 40:

• Vibrations Appendix B
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VIBRATIONS

)(tBuAxx +=&

)(tFKxxCxM =++ &&&

Linear systems representation:

State Variables representation:

Vibrations
Analysis

First-order matrix differential equation

Second-order matrix differential equation

Undamped0=C
0≠C Damped

Unforced0)( =tF
0)( ≠tF Forced
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VIBRATIONS – SEMIDEFINITE SYSTEMS
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VIBRATIONS

Case Study:

State variable representation
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VIBRATIONS

Case Study:

Vibration representation
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VIBRATIONS

Modal Motions:

0=+ KxxM &&

Stiffness matrix

Inertia matrix
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Eigenvalue Problem!

Homogeneous 
Equation
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VIBRATIONS

Modal Motions:
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VIBRATIONS

Case Study:
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Characteristic equation:
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VIBRATIONS

)(tBuAxx +=&

)(tFKxxCxM =++ &&&

Linear systems representation:

State Variables representation:

Vibrations
Analysis

First-order matrix differential equation

Second-order matrix differential equation

Undamped0=C
0≠C Damped

Unforced0)( =tF
0)( ≠tF Forced
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VIBRATIONS – MODAL DAMPING

Modal Motions:

Decoupling (modal matrix P based on zero damping)
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VIBRATIONS – MODAL DAMPING

Special Case: Proportional Damping
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