ME242 - MECHANICAL ENGINEERING SYSTEMS

LECTURE 36:

e Review - Test 2
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ENERGY STORAGE: COMPLIANCE & INERTANCE
Power: P= ef
Energy: E = del‘ = jefdt

Energy Storage Mechanisms

Compliance — Potential Energy
Store energy by virtue of a generalized displacement

E=|efdt = |eqdi = je(Zdt = [edg,e = e(g)

Inertance — Kinetic Energy
Store energy by virtue of a generalized momentum

E=Jefar= prar=[C pit= fap.f = £
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LINEAR vs. NONLINEAR COMPLIANCE

Chordal compliance

e| Linear | € [Nonlinear /

C C
both cases
C is constant C= C(q)
q q
Ge(q)

Tangential compliance — =
2 A
C oq
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CHARACTERISTIC

Given: V =V (q)

Find: characteristic

Recall: V = je(q) dq

a V Governing

e ( q ) way to
aq obtain e(q)
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Thus:




COMPLIANCE - CAUSALITY

Integral Derivative
L@~ O
| q'(e) |

based on
q=q(e)
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LINEAR vs

Linear

. NONLINEAR INERTANCE
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p

. 1
Tangential inertance— =

Nonlinear

Chordal inertance

L

1
7 both cases

I=1(p)

of (p)

op
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CHARACTERISTIC

Given: T =T(p)

Find: characteristic

Recall: 7= [ f(p)dp

a T Governing
Thus — = f p way to
op ( ) obtain f(p)
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INERTANCE - CAUSALITY

Integral Derivative

r ) g
7=fpy | @,

based on

p=p(f)




LINEARIZATION - FUNCTION OF ONE VARIABLE

non-linear function f (x)

y=/(x)
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LINEARIZATION - FUNCTION OF ONE VARIABLE

Y
)

dx | _-

X=X

Goal 1: to determine slope
at a particular point

y=f(x)
X
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LINEARIZATION - FUNCTION OF ONE VARIABLE
%

Goal 2: to rewrite function
in perturbation coordinates

X

y=/(x)

11
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LINEARIZATION - FUNCTION OF ONE VARIABLE
non-linear function f(x)  y= f(x)

nominal value of x 1s X
nominal value of y isy

Nominal solution of f(x) 1s f (x)|x=f = f(X)

Or y=/f(x)
May be given X and have to solve for Y or vice-versa
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LINEARIZATION - FUNCTION OF ONE VARIABLE

y=f(x)

take Taylor series about nominal point

2 =2

y=1(x) +% _ (x —)T) + C;"x{[x (x 2x) + higher order terms
actual values pertubation values
X=X+x X =x-X
y=y+y Y =y-y
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LINEARIZATION - FUNCTION OF ONE VARIABLE

Taylor series in perturbation coordinates,

* df *

y=f(x)=y-y=y == x + 7+higher0 er terms

Keeping only the linear (first order) terms

. x df
Yy =ax where a=——
dx| _.
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LINEARIZATION - FUNCTION OF TWO VARIABLES
y = flz,u)

Taylor’s expansion (only first order terms):

af

yf?"‘a _(u-m

ot i, O
—;r.-_'{'r £)+3¢¢ L=

L=
U= 1= ik

* . 3 .
Defining: X =X—X, Yy =y—y, u =u-—1iu
We can write:
df af
* * *
"=t e’y = —=— o
4 ‘ - * 6‘:1: =T “ {M r=T
== y=7
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LINEARIZATION - FIRST ORDER ODEs

Start non - linear differential equation
(Single First Order Diff -E - Q)

= f(sleate)

Total, Nominal and Pertubation Variables
x(t) =X+ x*(t)
u(t) =Uu + u*(t)
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LINEARIZATION - FIRST ORDER ODEs

Find nominal solution(s)

f(x,@)=0
Linearize function

7= g b = a_f

ax ng 8” xig

Linearize differential equation
dc . = .
——~ax +bu
- dt .

LINEARIZATION - nt" ORDER ODEs

State Variable Representation:

dx
Z:f(xau)
N ] 3
X = % U= = f = f2
X U, _];n_
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LINEARIZATION - nt" ORDER ODEs

State Variable Representation:
dx
—=f (x, u)
dt

The equilibrium solution is given by

x,u: 0=f(x,u)

0] [ £i(x,%,,....X, L_tl,ﬁz,...,ﬁm)_
0 Fo (R X, X,y 1, )
0] | £o(X, %5500 X, 1,000, ).
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LINEARIZATION - nth ORDER ODEs

We define the perturbation variables as
. *
X=X+X

. %
Uu=u-—+u

Then we can write

dx
= f(xa u)
dt

as (by Taylor series expansion)

de _dy dx'_ ./ of
= = +
i a7 (370) Ox|x-

x=x ou

X=X
u=u
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x*+al u +HOT
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LINEARIZATION - nt" ORDER ODEs

After neglecting the HOT, we have

*
dx " ]
——=Ax + Bu
dt
[ o o
Ox, 0Ox, Ox, Ou, Ou,
Ly R % %y (%%
o |0 R L Tade T
& o U AN
| Ox, Ox, ox, | | Ou, Ou,

it
Sl w
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=
0

S =
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LINEARIZATION - PHASE PLANE

Local analysis around critical point — linearization

dt :{fl(xlaxz):| N dt _|:A11 4,

dx dx
-2 f2(x1’x2) Linearization 2 A21 A22
dt around an dt
equilibrium

The solution of the linearized equation can be written as:

eigenvector eigenvalue
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|

X

Xy

|
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LINEARIZATION - PHASE PLANE

Eigenvalues and Eigenvectors:
Av=Av
Solution?: Av=Alv
(AUU-AW=0
A non-trivial solution requires
det(A/ —4)=0 =2

Known A we can compute v from

(AU-Ap=0 =v
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LINEARIZATION - STABILITY

*

dx dx * X Vin | a W | 4
—=f(x) > —=4Ax = =¢ e +c, e
dt Linearization 4! Solution %2 Via Voy
around an
equilibrium

If the linearized system is strictly stable (i.e., if all eigenvalues of A are strictly
in the left-half complex plane), then the equilibrium point is asymptotically
stable (for the actual nonlinear system)

If the linearized system is unstable (i.e., if at least one eigenvalue of A is strictly
in the right-half complex plane), then the equilibrium point is unstable (for the
actual nonlinear system)

If the linearized system is marginally stable (i.e., if all eigenvalues of A are in
the left-half complex plane, but at least one of them is on the imaginary axis),
then one cannot conclude anything from the linear approximation (the
equilibrium point may be stable, asymptotically stable or unstable for the actual
nonlinear system)
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LINEARIZATION - 2D PHASE PLANE

Linear System:

dx

-1

dt :{AM A12:||:xlj|:> |:xl:|zcl|:vll:|e/11t+CZ|:V21:|eﬂzt
ax, 4y Ay |l X, X2 Vi2 Va2

dt

Classification of the equilibrium

If A, and A, are negative real STABLE NODE
If A, and A, are positive real UNSTABLE NODE
If 4, is positive real and 4, is negative real SADDLE POINT
If A, and A, are imaginary conjugates CENTER POINT
If A, and A, are complex conjugates
Real part negative STABLE FOCUS
Real part positive UNSTABLE FOCUS
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LINEARIZATION - 2D PHASE PLANE

STABLE NODE UNSTABLE NODE SADDLE POINT

T3 f

. S
o o 2K

e e 5/
S S 7 e
o+

STABLE FOCUS UNSTABLE FOCUS CENTER POINT
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SIMPLE CIRCUITS

Creation of simple multi-element bond graphs
Key Concepts:

[JEach element has two sides

[JElements interconnect by simple junctions
[]Graph simplified by removal of ground
[JRemove two ported multiports

Slight Differences:

[1Electrical and Fluid very similar
[IMechanical slightly different
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ELECTRIC CIRCUITS

Identify all nodes and all elements
(there are two nodes for each element)

1. Represent each electrical junction (node) with a 0 junction

[JRepresent each element with I, R or C
(each element gets a bond to it)

2. Connect each element's bond to a 1 junction

[JConnect each 1 junction to 2 0 junctions

3. Discard all bonds for e =0 (ground) and i =0
4. Eliminate all junctions with only two bonds
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FLUID CIRCUITS

Identify all nodes and all elements
(there are two nodes for each element)

1. Represent each node with a 0 junction [7,7ie

[JRepresent each element with I, R or C|electrical
(each element gets a bond to it)

circuits!

2. Connect each element's bond to a 1 junction

[JConnect each 1 junction to 2 0 junctions

3. Discard all bonds for e =0 (ground) and i = 0
4. Eliminate all junctions with only two bonds
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MECHANICAL CIRCUITS

Identify all nodes and all elements
(there are two nodes for each element)

1. Represent each mech. junction with a 1 junction
[IPlaceall I's on 1 junctions

2. Connect each R, C elements on a 0 junction
[JConnect each 0 junction to 2 1 junctions

3. Coalesce bonded junctions of same type

4. AddinS, S, S, as needed.

5. Discard all bonds for e = 0 (ground) and / = 0

6. Eliminate all junctions with only two bonds
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IDEAL MACHINES

€ Ideal e,

4, Machine q,

An ideal machine is a two port device that transmits
work from one port to the other

e No energy is stored, generated or dissipated
e Entropy is not generated
e Can be run in either direction

Power Conservation

. .
ME242 - Spring 2005 - Eugenio Schuster 1 ql 2 qz
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IDEAL MACHINES - TRANSFORMER
Defining Condition: q.Z — qu
€ e, €, €

— T —— or = T <
9 q, q, 9

\ Transformer Modulus (constant)

The modulus of the Transformer, 7, is defined as the ratio of the
generalized velocity or flow on the bond with the outward power

arrow to the generalized velocity or flow on the bond with the
inward power convention arrow
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IDEAL MACHINES - TRANSFORMER

Combining the Ideal Machine condition:
¢qd, = &4,

with the Transformer condition:

q, = qu\

. L . T = 9> _
yields an additional condition: — . —

el = Te2/ QI 82

The ratio of the generalized forces of an ideal tranformer equals
the inverse of the ratio of the respective generalized velocities
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IDEAL MACHINES - GYRATORS
Defining Condition: 82 = qu

e e e e
1 1
-G—— or ——G —
q,

\q‘z q,
Gyrator Modulus (constant)

The modulus of the Gyrator, G, is defined as the ratio of the
effort on one of the bonds - either one - to the flow on the other
bond
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IDEAL MACHINES - GYRATOR

Combining the Ideal Machine condition:
¢qd, = &4,

with the Gyrator condition:

€, = G%

yields an additional condition: G —

/ . — .
e, = qu q, q,

The ratio of the generalized forces of an ideal tranformer equals
the inverse of the ratio of the respective generalized velocities
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CASCADED TRANSFORMER
[ 1 ° 2 o
q, q, q;
The definition of transformer requires that
q; = 1,4, = 1,1 )4,
e =Te, =TT,e,

Then,

€ €,
, T . T'=TT,
4, q;
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CASCADED GYRATORS
e e e
1 2 3
— G,—— G,—
q, q, q

The definition of transformer requires that
e G G
. 2 1 . . 1
q; = =—q, ¢=04q,=—¢
Gz Gz Gz

Then,
e e
1 3
1 _ 7 — 7-5
ql q3 Gz
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TRANSFORMER - GYRATORS PAIRS

& _ 7 & _ G

/i g /5

Gyrator: &; = Gf, Transformer: f, =Tf, = e, = GTf,
Transformer: ¢, = T82 Gyrator: e, = Gf3:> e = TGf3

Then,

S G-2_  witlG'=1G
Ji Vg
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SOURCE - TRANSFORMER - RESISTOR

Two equivalent
views:

S
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EFFECTIVE RESISTANCE (AS SEEN BY SOURCE)

e e
S .1 T - 2 R (example; T=2)
q, q,
eZ ez T R /
R
— .
q,
9, T
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EFFECTIVE SOURCE (AS SEEN BY RESISTANCE)

el 82
S ; T - R (example; T=2)
q, q,
€ e,
T
S S’/
—
q, q,1
S — R
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SOURCE - GYRATOR - RESISTOR

Two equivalent
views:

S
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EFFECTIVE RESISTANCE (AS SEEN BY SOURCE)

el 82
S : G - R (example; G=.5)
q, q,
€, . ,
.G R
R 2
q, G
S — R’
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EFFECTIVE SOURCE (AS SEEN BY RESISTANCE)

e e,
S G - R (example; G=2)
q, q,
€ S /
q,G
S
~ il
d, G
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MECHANICAL CONSTRAINTS

Kinematic Constraints: Govern details on how
efforts and flows are related

Two Approaches:

1. Write Displacement constraints and then take
derivative to get velocity constraints

2. Write velocity constraint directly

Either approach can be used
Use the one that is more natural
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MECHANICAL CONSTRAINTS

. The vector velocities for arbifrary points A and B on a rigid body are
related by
Vg =VaA+ ¢ Xrag,

where rap is a geometric vector from point A to point B, and qzt- is the
angular velocity vector for the body.

(a) two points on a body
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MECHANICAL CONSTRAINTS

2. Point A on one member and point B on another member have the same
velocities if both points are located coextensively at a pinned or swivel
joint between the members, ¢.c.

Ya=YVYp-

body b
including point B

including point A

(b) pinned joint between two bodies

parallel to surfaces at contact

47
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MECHANICAL CONSTRAINTS

3. Two instantaneously contacting points A and B which belong to separate
members in rolling contact also have same velocity . (The accelerations
of these two points are different, however, unlike the corresponding points
for pinned members.)

(c) rolling contact between two bodies

48
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MECHANICAL CONSTRAINTS

4. Two instantancously contacting points A and B which belong to separate
members in sliding contact have zero relative velocity in the direction
normal to the surfaces in contact. That is, if n is a vector normal to the
surfaces of contact,

(va—vp) - n=0

parallel to surfaces at contact

(c) sliding contact between two bodies
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APPROACH TO MODELING

1. Identify critical velocities.

---body mass centers
---connection points between bodies
2. Label critical velocities on physical model

3. Place each at its own 1 junction
4. Find constraint relationships between them

5. Place on bond diagram
6. Addin I, C, R and S as needed

0-Junction
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APPLYING CAUSAL STROKES

1. Mandatory strokes for effort and flow sources.
2. Resulting mandatory strokes through 0, 1, T, G
3. Apply integral causality to one of the remaining I, C

4. Apply steps 2 and 3 as many times as possible.
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THREE OUTCOMES POSSIBLE

1. Every bond assigned causality.
Every compliance and inertance have integral causality.
Models called causal

2. Every bond assigned causality.
One or more compliance, inertance with differential causality.
Models called over -causal

3. Some bonds note assigned causality.
Models called under - causal
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DIFF. EQS. FOR CAUSAL MODELS

1. Annotate diagram in order of causal assignment.
Input effort and flows first,
with x for their conjugate variable.

2. Nextap or g, circle it
do integral causality to get p/ I or g/ 1 if linear
orf(p) or e(q) if nonlinear

3. Propage efforts and flows through diagram
use order of assignment from steps 1 and 2 (easier)
causality determine output of propogation

4. Write first order differential equations
bottled terms are on left sife
right side determined by causality
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OVER-CASUAL SYSTEMS

Fewer differential equations than energy storage elements.

Using bond graphs produces differential equations

with derivatives on both sides of first order equations.

One additionial step required to get standard form.
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UNDER-CASUAL SYSTEMS

Causality insufficient to define all efforts and flows.

Virtual compliances or/and inertances needed.

Using bond graphs produces some algebraic equations.
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UNDER-CASUAL SYSTEMS

Standard procedure leaves bonds with no strokes.

(or/and)
J/ Add virtual inertance to 1 junction. C

1%

Add virtual compliance to 0 junction. —OI/—

These elements have zero modulii (C, =0, /7, =0)

and zero 1nitial state. (¢,=0, p, = O)

This is the "algebraic-reduction method"
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UNDER-CASUAL SYSTEMS

1 p,=1f,=0=p, =0
Pvav:cfe 1,=0
1,
0 4=Ce=0=¢,=0
e, =cte—l/7q'v C,=0
C
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UNDER-CASUAL SYSTEMS

Application of the method results in

Semi-Explicit Form
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