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ME242 – MECHANICAL ENGINEERING SYSTEMS

LECTURE 36:

• Review – Test 2
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ENERGY STORAGE: COMPLIANCE & INERTANCE

efP =Power:

dtefdtPE ∫∫ ==Energy:

Energy Storage Mechanisms

Compliance → Potential Energy
Store energy by virtue of a generalized displacement

)(, qeedqedt
dt
dqedtqedtefE ===== ∫∫∫∫ &

)(, pffdpfdtf
dt
dpdtfpdtefE ===== ∫∫∫∫ &

Inertance → Kinetic Energy
Store energy by virtue of a generalized momentum
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C

Linear Nonlinear

C is constant ( )C C q=

Chordal compliance

( )1 e q
Tangential compliance

C q
∂

=
∂

both cases

LINEAR vs. NONLINEAR COMPLIANCE
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Given: ( )V V q=
Find: characteristic

( )Recall:V e q dq= ∫

( )V e q
q

∂
=

∂
Thus:

Governing
 way to

obtain ( )e q

CHARACTERISTIC
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Cq& C

based on

e

( )q q e=

Integral Derivative
)(qe

( )eq&

COMPLIANCE - CAUSALITY
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1

I

Chordal inertance

( )1 f p
Tangential inertance

I p
∂

=
∂

( )I I p=
both cases

LINEAR vs. NONLINEAR INERTANCE

1
f

p

I

1

S

Linear Nonlinear

p

f
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Given: ( )T T p=
Find: characteristic

( )Recall: T f p dp= ∫

( )T f p
p

∂
=

∂

Governing
  way to
obtain ( )f p

Thus:

CHARACTERISTIC
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p&

( )f f p=

Integral Derivative

I
fI

( )p p f=
based on

INERTANCE - CAUSALITY

( )fp&
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( )y f x=

y

x

non-linear function ( )f x

LINEARIZATION – FUNCTION OF ONE VARIABLE
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( )y f x=

y

x
x

y

( )

x x

df xa
dx =

=

Goal 1: to determine slope 
at a particular point 

LINEARIZATION – FUNCTION OF ONE VARIABLE
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( )y f x=

y

x
x

y *x

*y
* *y ax=

LINEARIZATION – FUNCTION OF ONE VARIABLE

Goal 2: to rewrite function 
in perturbation coordinates 
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( )y f x=

value of  is x xnominal
value of  is y ynominal

non-linear function ( )f x

Nominal solution of ( ) is ( ) ( )
x x

f x f x f x
=
=

Or     ( )y f x=

LINEARIZATION – FUNCTION OF ONE VARIABLE

May be given     and have to solve for     or vice-versa x y
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( )y f x=
take Taylor series about nominal point

pertubation values
*x x x= −
*y y y= −

actual values
*x x x= +
*y y y= +

( ) ( )22

2( )
2x x x x

x xdf d fy f x x x higher order terms
dx dx= =

−
= + − + +

LINEARIZATION – FUNCTION OF ONE VARIABLE

ME242 - Spring 2005 - Eugenio Schuster 14

Taylor series in perturbation coordinates,
22 *

* *
2( )

2x x x x

df d f xy f x y y y x higher order terms
dx dx= =

− = − = = + +

LINEARIZATION – FUNCTION OF ONE VARIABLE

x x

dfa
dx =

=where** axy =

Keeping only the linear (first order) terms
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LINEARIZATION – FUNCTION OF TWO VARIABLES

Taylor’s expansion (only first order terms):

Defining: uuuyyyxxx −=−=−= ***     ,     ,

We can write:
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( )Single First Order Diff - E - Q

Total, Nominal and Pertubation Variables

Start non - lineardifferential equation
LINEARIZATION – FIRST ORDER ODEs

( ) ( )( )tutxf
dt
dx ,=

( ) ( )
( ) ( )tuutu

txxtx
*

*

+=

+=
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Find nominal solution(s)

Linearize function

x x
u u

fa
x =

=

∂
=
∂ x x

u u

fb
u =

=

∂
=
∂

Linearize differential equation
*

* *dx ax bu
dt

≈ +

LINEARIZATION – FIRST ORDER ODEs

( ) 0, =uxf
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LINEARIZATION – nth ORDER ODEs

( )uxfx ,=
dt
d

State Variable Representation:
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LINEARIZATION – nth ORDER ODEs

( )uxfx ,=
dt
d

State Variable Representation:

The equilibrium solution is given by

( )uxfux ,0    :, =

( )
( )
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LINEARIZATION – nth ORDER ODEs

*

*

uuu
xxx

+=

+=
We define the perturbation variables as

Then we can write 

( )uxfx ,=
dt
d

as (by Taylor series expansion) 

( ) HOT
dt

d
dt
d

dt
d

+
∂
∂

+
∂
∂

+=+=
=
=

=
=

**
*

, u
u
fx

x
fuxfxxx

uu
xx

uu
xx
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LINEARIZATION – nth ORDER ODEs

After neglecting the HOT, we have

**
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dt

d
+=
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LINEARIZATION – PHASE PLANE

( )
( ) 
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
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The solution of the linearized equation can be written as:

tt e
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
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eigenvalueeigenvector

Linearization 
around an 
equilibrium

Local analysis around critical point → linearization
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LINEARIZATION – PHASE PLANE

vAv λ=
Eigenvalues and Eigenvectors:

Solution?:

( ) 0=−
=

vAI
IvAv

λ
λ

A non-trivial solution requires

( ) 0det =− AIλ λ⇒

Known λ we can compute v from 

( ) 0=− vAIλ v⇒
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LINEARIZATION – STABILITY

( ) *
*

            Ax
dt
dxxf

dt
dx

=⇒=

If the linearized system is strictly stable (i.e., if all eigenvalues of A are strictly 
in the left-half complex plane), then the equilibrium point is asymptotically 
stable (for the actual nonlinear system)

If the linearized system is unstable (i.e., if at least one eigenvalue of A is strictly 
in the right-half complex plane), then the equilibrium point is unstable (for the 
actual nonlinear system)

If the linearized system is marginally stable (i.e., if all eigenvalues of A are in 
the left-half complex plane, but at least one of them is on the imaginary axis), 
then one cannot conclude anything from the linear approximation (the 
equilibrium point may be stable, asymptotically stable or unstable for the actual 
nonlinear system)
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Linearization 
around an 
equilibrium

Solution
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LINEARIZATION – 2D PHASE PLANE
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Linear System:

Classification of the equilibrium
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
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If λ1 and λ2 are negative real
If λ1 and λ2 are positive real
If λ1 is positive real and λ2 is negative real
If λ1 and λ2 are imaginary conjugates 
If λ1 and λ2 are complex conjugates

Real part negative
Real part positive  

STABLE NODE
UNSTABLE NODE
SADDLE POINT
CENTER POINT

STABLE FOCUS
UNSTABLE FOCUS
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LINEARIZATION – 2D PHASE PLANE

STABLE NODE UNSTABLE NODE SADDLE POINT

STABLE FOCUS UNSTABLE FOCUS CENTER POINT



14

ME242 - Spring 2005 - Eugenio Schuster 27

 Creation of simple multi-element bond graphs�

 Each element has two sides�

 Elements interconnect by simple junctions�
 Graph simplified by removal of  ground�
 Remove two ported multiports�

 Electrical and Fluid very similar�
 Mechanical slightly different�

SIMPLE CIRCUITS

Key Concepts:

Slight Differences:
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 Identify all nodes and all elements�

electrical junction (node1.   Represent each  with a 0 j) unction

 Represent each element with I, R or C�

( )there are two nodes for each element

( )each element gets a bond to it

2.   Connect each element's bond to a 1 junction

 Connect each 1 junction to 2 0 junctions�

3.   Discard all bonds for  (ground) and e = 0 i = 0
4. Eliminate all junctions with only two bonds

ELECTRIC CIRCUITS
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1.   Represent each node with a 0 junction Just like
electrical
circuits!

FLUID CIRCUITS

 Identify all nodes and all elements�
( )there are two nodes for each element

 Represent each element with I, R or C�
( )each element gets a bond to it

2.   Connect each element's bond to a 1 junction

 Connect each 1 junction to 2 0 junctions�

3.   Discard all bonds for  (ground) and e = 0 i = 0
4. Eliminate all junctions with only two bonds
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 mech. junction1.   Represent each  with a  junc1 tion
 Place all I's on 1 junctions�

R, C element2.   Connect s on a 0 jun each ction
 each 0 junction to 2 1 juConne nctct ions�

5.   Discard all bonds for  (ground) and e = 0 f = 0
6. Eliminate all junctions with only two bonds

3. Coalesce bonded junctions of same type
4. Add in S, S S as needed.fe

MECHANICAL CIRCUITS

 Identify all nodes and all elements�
( )there are two nodes for each element
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Ideal
Machine

1e 2e
1q& 2q&

IDEAL MACHINES

An ideal machine is a two port device that transmits 
work from one port to the other

• No energy is stored, generated or dissipated
• Entropy is not generated
• Can be run in either direction

1 1 2 2e q e q=& &

Power Conservation
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T Tor1e 2e
1q& 2q&

2 1q Tq=& &

1e2e
1q&2q&

IDEAL MACHINES - TRANSFORMER

Defining Condition:

Transformer Modulus (constant)

The modulus of the Transformer, T, is defined as the ratio of the 
generalized velocity or flow on the bond with the outward power 
arrow to the generalized velocity or flow on the bond with the 
inward power convention arrow
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1 1 2 2e q e q=& &

2 1q Tq=& &

1 2e Te=

IDEAL MACHINES - TRANSFORMER

Combining the Ideal Machine condition:

with the Transformer condition:

yields an additional condition:

The ratio of the generalized forces of an ideal tranformer equals 
the inverse of the ratio of the respective generalized velocities

2 1

1 2

q eT
q e

= =
&

&
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IDEAL MACHINES - GYRATORS

Defining Condition:

Gyrator Modulus (constant)

The modulus of the Gyrator, G, is defined as the ratio of the 
effort on one of the bonds – either one – to the flow on the other 
bond

2 1e Gq= &

G or1e 2e
1q& 2q&

1e2e
1q&2q& G
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1 1 2 2e q e q=& &

IDEAL MACHINES - GYRATOR

Combining the Ideal Machine condition:

with the Gyrator condition:

yields an additional condition:

The ratio of the generalized forces of an ideal tranformer equals 
the inverse of the ratio of the respective generalized velocities

2 1e Gq= &

1 2e Gq= & 2

1

1

2

q
e

q
eG

&&
==
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1T 2T1e 2e 3e
1q& 2q& 3q&

3 2 2 2 1 1q T q T T q= =& & &

1 1 2 1 2 3e T e TT e= =

T1e
1q&

3e
3q& 1 2T TT=

CASCADED TRANSFORMER

The definition of transformer requires that

Then,
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2G1G1e 2e 3e
1q& 2q& 3q&

1
1 1 2 3

2

Ge G q e
G

= =&2 1
3 1

2 2

e Gq q
G G

= =& &

T1e
1q&

3e
3q&

1

2

GT
G

=

CASCADED GYRATORS

The definition of transformer requires that

Then,
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TRANSFORMER – GYRATORS PAIRS

GT1e 2e 3e

1f 2f 3f

3 1e GTf⇒ =

1 3e TGf⇒ =

'G1e 3e

1f 3f
with 'G TG=

Gyrator: 23 Gfe = Transformer: 12 Tff =
Transformer: 21 Tee = Gyrator: 32 Gfe =

Then,
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T RS

′RS

R′S

SOURCE - TRANSFORMER – RESISTOR

Two equivalent 
views:
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2e

′RS
2q&

T RS 1e
1q& 2q&

2e

⇒
R 2e T

2q
T
&

′R

(example; T=2)

EFFECTIVE RESISTANCE (AS SEEN BY SOURCE)
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1e

R′S

1q&

T RS 1e
1q& 2q&

2e

⇒
S

1e
T

1q T&

(example; T=2)

′S

EFFECTIVE SOURCE (AS SEEN BY RESISTANCE)
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RS

′RS

R′S

SOURCE - GYRATOR – RESISTOR

Two equivalent 
views:

G
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2e

′RS

2q&

G RS 1e
1q& 2q&

2e

⇒
R

2e
G

2q G& ′R

(example; G=.5)

EFFECTIVE RESISTANCE (AS SEEN BY SOURCE)
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1e

R′S

1q&

G RS 1e
1q& 2q&

2e

⇒
S

1e
G

1q G&

(example; G=2)

′S

EFFECTIVE SOURCE (AS SEEN BY RESISTANCE)
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MECHANICAL CONSTRAINTS

Kinematic Constraints: Govern details on how 
efforts and flows are related

Two Approaches:
1. Write Displacement constraints and then take 

derivative to get velocity constraints
2. Write velocity constraint directly

Either approach can be used
Use the one that is more natural
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MECHANICAL CONSTRAINTS
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MECHANICAL CONSTRAINTS
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MECHANICAL CONSTRAINTS

have same velocity
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MECHANICAL CONSTRAINTS
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1.  Identify critical velocities.
---body mass centers
---connection points between bodies

2. Label critical velocities on physical model
3. Place each at its own 1 junction
4. Find constraint relationships between them
5. Place on bond diagram
6. Add in I, C, R and S as needed

APPROACH TO MODELING

0-Junction
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1.  Mandatory strokes for effort and flow sources.

2.  Resulting mandatory strokes through 0, 1, T, G

3.  Apply integral causality to one of the remaining I, C

4.  Apply steps 2 and 3 as many times as possible.

APPLYING CAUSAL STROKES
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1.  Every bond assigned causality.
 Every compliance and inertance have integral causality.    
 Models called     causal

2.  Every bond assigned causality.
One or more compliance, inertance with differential causality.     
Models called      over -causal

3.  Some bonds note assigned causality.
Models called      under -causal

THREE OUTCOMES POSSIBLE
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1.  Annotate diagram in order of causal assignment.
Input effort and flows first,
with  for their conjugate variable.×

2.  Next a  or , circle itp q& &
do integral causality to get /  or /  if linearp I q I

( ) ( )or  or  if nonlinearf p e q

DIFF. EQS. FOR CAUSAL MODELS

3.  Propage efforts and flows through diagram
use order of assignment from steps 1 and 2 (easier)
causality determine output of propogation

4.  Write first order differential equations
bottled terms are on left sife
right side determined by causality
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Fewer differential equations than energy storage elements.

Using bond graphs produces differential equations
    with derivatives on both sides of first order equations.

One additionial step required to get standard form.

OVER-CASUAL SYSTEMS
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Causality insufficient to define all efforts and flows.

Using bond graphs produces some algebraic equations.

Virtual compliances or/and inertances needed.

UNDER-CASUAL SYSTEMS
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Standard procedure leaves bonds with no strokes.

Add virtual compliance to 0 junction.

Add virtual inertance to 1 junction.
( )or/and

These elements have zero modulii

and zero initial state.

This is the "algebraic-reduction method"

vC

0

vI

1

( )0, 0v vq p= =

( )0, 0v vC I= =

UNDER-CASUAL SYSTEMS
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vI

1

vp&

vC

0
vq&

UNDER-CASUAL SYSTEMS

00 =⇒== vvvv pfIp &

ctefv =

00 =⇒== vvvv qeCq &

cteev =

0=vI

0=vC
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Application of the method results in

Semi-Explicit Form

( )d , ,
dt

t=
x f x u

( ), , t=0 g x u

UNDER-CASUAL SYSTEMS


