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ME242 – MECHANICAL ENGINEERING SYSTEMS

LECTURE 24:

• Numerical Methods - Matlab
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INTEGRATION OF ODE’s
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Given a scalar, first-order differential equation of the form

Goals:

• Advancement of the system in time by integration of ODE
• The quantity being integrated, f, is itself a function of the 

result of the integration, y.

Note:

• ODE’s of higher order are generalization of this first order case

Method:

• We seek to approximate the solution y(t) at timestep tn+1=tn+h
given to and the solution at the previously-computed 
timesteps t1 to tn
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INTEGRATION OF ODE’s - STIFFNESS

A stiff ODE is an ordinary differential equation that has a 
transient region whose behavior is on a different scale from that 
outside this transient region. 

An important characteristic of a stiff system is that the equations 
are always stable, meaning that they converge to a solution. The
following example clarifies this characteristic:
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Dominates the solution

Has negligible effect on the 
solution.
Restricts the step size of 
the numerical solver in 
order to make it stable
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INTEGRATION OF ODE’s - CLASSIFICATION

Multi-Step

Single-Step
To compute yn we only need the 
immediately preceding time poin yn-1

Number of steps:

Variable-Step

Fixed-Step
The value of h is constant

Size of steps:

NOTE: We have focused on Single-Step, Fixed-Step, both 
explicit and implicit methods
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INTEGRATION OF ODE’s – MATLAB

Solvers for Non-Stiff Problems:

ODE45: Based on an explicit Runge-Kutta (4,5) formula, the
Dormand-Prince pair. It is a one-step solver.In general, ode45 is the 
best function to apply as a "first try" for most problems.

ODE23: Based on an explicit Runge-Kutta (2,3) pair of Bogacki and
Shampine. It may be more efficient than ode45 at crude tolerances 
and in the presence of mild stiffness. Like ode45, ode23 is a one-step 
solver.

ODE113: Variable order Adams-Bashforth-Moulton PECE solver. It 
may be more efficient than ode45 at stringent tolerances and when the 
ODE function is particularly expensive to evaluate. ode113 is a
multistep solver.
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INTEGRATION OF ODE’s – MATLAB

Solvers for Stiff Problems:

ODE15s: Variable-order solver based on the numerical differentiation 
formulas (NDFs). Optionally it uses the backward differentiation 
formulas, BDFs, (also known as Gear's method). Like ode113, ode15s 
is a multistep solver. If you suspect that a problem is stiff or if ode45 
failed or was very inefficient, try ode15s.

ODE23s: Based on a modified Rosenbrock formula of order 2. Because 
it is a one-step solver, it may be more efficient than ode15s at crude 
tolerances. It can solve some kinds of stiff problems for which ode15s 
is not effective.

ODE23t: An implementation of the trapezoidal rule using a "free"
interpolant. Use this solver if the problem is only moderately stiff and 
you need a solution without numerical damping.

ODE23tb: An implementation of TR-BDF2, an implicit Runge-Kutta
formula with a first stage that is a trapezoidal rule step and a second 
stage that is a backward differentiation formula of order 2. Like 
ode23s, this solver may be more efficient than ode15s at crude 
tolerances.
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INTEGRATION OF ODE’s – MATLAB

Syntax:

[T,Y] = solver(odefun,tspan,y0) 
[T,Y] = solver(odefun,tspan,y0,options)
[T,Y] = solver(odefun,tspan,y0,options,P1,P2,…)

[T,Y] = solver(odefun,tspan,y0) with tspan=[t0,tf]. integrates 
the system of differential equations y’=f(y,t) from time t0 to tf
with initial conditions y0. odefun is a function handle. Function f 
= odefun(t,y), for a scalar t and a column vector y, must return 
a column vector f corresponding to f(y,t). Each row in the 
solution array Y corresponds to a time returned in column 
vector T. To obtain solutions at the specific times t0, t1,...,tf (all 
increasing or all decreasing), use tspan = [t0,t1,...,tf]. 
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INTEGRATION OF ODE’s – MATLAB

Syntax:

[T,Y] = solver(odefun,tspan,y0) 
[T,Y] = solver(odefun,tspan,y0,options)
[T,Y] = solver(odefun,tspan,y0,options,P1,P2,…)

odefun: A function handle that evaluates the right side of the differential 
equations y’=f(y,t).

tspan: A vector specifying the interval of integration, [t0,tf]. 

y0: A vector of initial conditions.

options: Structure of optional parameters that change the 
default integration properties. You can change this parameter 
using the “odeset” function.

Pi: Additional parameters for the odefun.
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INTEGRATION OF ODE’s – MATLAB

Example – Pendulum equations:
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% solve_pendulum.m

clear all

[t,x]=ode23('pendulum',[0 3],[0 pi/2]);

plot(t,x(:,2)*180/pi)

% pendulum.m

function f=pendulum(t,x)

L=1; W=1;g=32.2; I=L^2*W/(3*g);

f(1)=-W*(L/2)*sin(x(2));

f(2)=x(1)/I;

f=f';


