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ME242 – MECHANICAL ENGINEERING SYSTEMS

LECTURE 23:

• Numerical Methods
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INTEGRATION OF ODE’s
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Given a scalar, first-order differential equation of the form

Goals:

• Advancement of the system in time by integration of ODE
• The quantity being integrated, f, is itself a function of the 

result of the integration, y.

Note:

• ODE’s of higher order are generalization of this first order case

Method:

• We seek to approximate the solution y(t) at timestep tn+1=tn+h
given to and the solution at the previously-computed 
timesteps t1 to tn
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INTEGRATION OF ODE’s – RUNGE-KUTTA
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The Runge-Kutta methods can be written in the general form

The constants αi, βi, and γi are selected to match as many 
terms as possible of the exact solution

• These are explicit and “self starting” methods
• As the number of intermediate steps ki increases, the 
accuracy also increases
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INTEGRATION OF ODE’s – RUNGE-KUTTA
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We can compute the derivatives of the Taylor series expansion
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Given our ODE

as
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INTEGRATION OF ODE’s – RUNGE-KUTTA

Second Order Runge Kutta (RK2)
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With this scheme, we seek to match the exact solution
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INTEGRATION OF ODE’s – RUNGE-KUTTA

Second Order Runge Kutta (RK2)
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Matching coefficients to as high an order as possible, we require

Thus, the general form of the two-step second-order RK isc
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INTEGRATION OF ODE’s – RUNGE-KUTTA

Second Order Runge Kutta (RK2)
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α1=1/2 Midpoint Method

α1=1 Predictor-Corrector Method
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INTEGRATION OF ODE’s – RUNGE-KUTTA

( ) oyyyy == 0   with               λ&

Consider the following scalar problem

We note that the analytical solution to this problem is 

We now use the second order R-K to find a numerical solution 

2nd order R-K Method:

t
oeyty λ=)(

( ) ( )λαλλαλ
λ

hyyhyk
yk

nnn

n

112

1

1+=+=
=

( )λαλ
α

λ
α

hyhyhyy nnnn 1
11

1 1
2
1

2
11 ++








−+=+

Lecture23a.m
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INTEGRATION OF ODE’s – RUNGE-KUTTA

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Time Step h=0.01

t

analytical
numerical 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Time Step h=0.10

t

analytical
numerical 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Time Step h=0.50

t

analytical
numerical 

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Time Step h=1.00

t

analytical
numerical 

0 5 10 15 20 25 30
0

1

2

3

4

5

6
Time Step h=2.00

t

analytical
numerical 

0 5 10 15 20 25 30
0

5

10

15

20

25
Time Step h=2.10

t

analytical
numerical 

ME242 - Spring 2005 - Eugenio Schuster 307

INTEGRATION OF ODE’s - STABILITY

( ) oyyyy == 0   with               λ&

Consider the following scalar problem

2nd order Runge-Kutta Method:

Thus, assuming h constant, the solution at time step n is
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For large n, the numerical solution remains stable iff
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STABILITY - 2nd ORDER RUNGE-KUTTA
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INTEGRATION OF ODE’s - STABILITY

( ) oyyyy == 0   with               λ&

Consider the following scalar problem

2nd Order Runge-Kutta Method – Stability Region:

hRλ

hIλ Stability_RK2.m
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INTEGRATION OF ODE’s - ACCURACY

( ) oyyyy == 0   with               λ&

Consider the following scalar problem

Example: 2nd Order Runge-Kutta Method:

Exact Solution:
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By comparison, the leading error is proportional to h3
2nd Order Runge-Kutta is second-order accurate
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INTEGRATION OF ODE’s – RUNGE-KUTTA
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A popular 4th Order Runge-Kutta method can be written as


