ME242 - MECHANICAL ENGINEERING SYSTEMS

LECTURE 22:

e Numerical Methods
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INTEGRATION OF ODE's

Given a scalar, first-order differential equation of the form

d .
;;:f(yat) with y(to):yo

Goals:

¢ Advancement of the system in time by integration of ODE

e The quantity being integrated, f, is itself a function of the
result of the integration, y.

¢ ODE's of higher order are generalization of this first order case

Method:

e We seek to approximate the solution y(?) at timestep ¢,, ,=t,+h
given ¢, and the solution at the previously-computed
timesteps ¢, to ¢,

Note:

e ODE's of higher order are generalization of this first order case
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INTEGRATION OF ODE'’s - EXPLICIT EULER

Considering the Taylor series expansion of y(?) at ¢, ,=t,+h

: /. o

Denoting the numerical approximation of y(¢,) as y,, and
recalling that

vy =f(t,)

the time integration based on the first two terms of the series
expansion is given by

Vo =V, + hf(yn,tn) Explicit Euler Method

Lecture22a.m
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INTEGRATION OF ODE'’s - EXPLICIT EULER
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INTEGRATION OF ODE'’s - EXPLICIT EULER

Consider the following scalar problem
y=Aa  with  3(0)=y,
We note that the analytical solution to this problem is

y(t)=y,e"

We now use the Euler Method to find a numerical solution

Explicit Euler Method: V1 =V thAy,
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INTEGRATION OF ODE'’s - EXPLICIT EULER
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INTEGRATION OF ODE’s — IMPLICIT EULER

Considering the Taylor series expansion of y(?) at ¢,=t,. ,-h

. o o
y(tn):y(tnﬂ)_hy (tn+l)+?y (tn+1)_zy (tn+l)+”'

Denoting the numerical approximation of y(¢,) as y,, and
recalling that

y;'le = f(yn+19tn+1)

the time integration based on the first two terms of the series
expansion is given by

Vo =V, + hf(ynn:tnﬂ) Implicit Euler Method
Lecture22b.m

NOTE: Difficult to implement when f'is nonlinear in y(t)
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INTEGRATION OF ODE’s — IMPLICIT EULER

Consider the following scalar problem

y=Ay with »(0)=1y,

We note that the analytical solution to this problem is

At
y(t)=y,e
We now use the Euler Method to find a numerical solution

Implicit Euler Method: Vs =Vu ThAY,,

U

Y1 = m)’n
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INTEGRATION OF ODE'’s - IMPLICIT EULER
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INTEGRATION OF ODE’s = CRANK-NICHOLSON
The formal solution of @ _ 7(,1)

Over the interval [¢,, ¢, ;] is given by

yn+1 = yn +J.:n+l f(yﬂt)dt

Approximating the integral with the tr@
trapezoidal rule

() f(y ,f )+f(y 17t 1)
tdtzh n°’‘n n+ n+
() 5

We obtain a new integration method: t, 1 ‘-

n n+l

Yot = [f<yn,rn)+f<yn+1, f,.1)] Crank-Nicholson Method
Lecture22c.m
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INTEGRATION OF ODE’s — CRANK-NICHOLSON

Consider the following scalar problem

y=Ay with

¥(0)=y,

We note that the analytical solution to this problem is

y(t)=y,e"

We now use the Euler Method to find a numerical solution

h
Crank-Nicholson Method: Y,.; =V, t+ E/I[yn + yn+1]
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INTEGRATION OF ODE’s — CRANK-NICHOLSON
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Time Step h=0.50
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INTEGRATION OF ODE's - STABILITY
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INTEGRATION OF ODE's - STABILITY

Consider the following scalar problem

y=2dy  with  ¥(0)=y,
Example: Explicit Euler Method Y, =Y, + Ay, = (1 + M)yn
Thus, assuming 4 constant, the solution at time step » is
y,=(1+hA)'y, =c"y, =>c=1+hA
For large n, the numerical solution remains stable iff

o] <1= (1+hd, ) +(hA, ) <1 assuming A = A, +i4,
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INTEGRATION OF ODE's - STABILITY

Consider the following scalar problem
y=Aa  with  3(0)=y,

Explicit Euler Method - Stability Region:

STABILITY - EXPLICIT EULER
3

Ah o Q Stability.m
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INTEGRATION OF ODE'’s - ACCURACY

EXPLICIT EULER IMPLICIT EULER CRANK-NICHOLSON
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INTEGRATION OF ODE'’s - ACCURACY

Consider the following scalar problem
y=Aa  with  y(0)=y,
Exact Solution:

¥(,) =y, =y, () = yo(l + Ah +

Example: Explicit Euler Method:
V.=, +hiy =(1+hA)y,

yﬂ :y0(1+h2‘)’7

By comparison, the leading error is proportional to 4?
EXPLICIT EULER is first-order accurate

2h? fiﬁ]”
+
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