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ME242 – MECHANICAL ENGINEERING SYSTEMS

LECTURE 22:

• Numerical Methods
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INTEGRATION OF ODE’s

( ) oo ytytyf
dt
dy

== )(    with                ,

Given a scalar, first-order differential equation of the form

Goals:

• Advancement of the system in time by integration of ODE
• The quantity being integrated, f, is itself a function of the 

result of the integration, y.
• ODE’s of higher order are generalization of this first order case

Note:

• ODE’s of higher order are generalization of this first order case

Method:

• We seek to approximate the solution y(t) at timestep tn+1=tn+h
given to and the solution at the previously-computed 
timesteps t1 to tn
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INTEGRATION OF ODE’s – EXPLICIT EULER
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Considering the Taylor series expansion of y(t) at tn+1=tn+h

Denoting the numerical approximation of y(tn) as yn, and 
recalling that

the time integration based on the first two terms of the series 
expansion is given by 

Explicit Euler Method( )nnnn tyhfyy ,1 +=+

( )nnn tyfy ,' =

Lecture22a.m
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INTEGRATION OF ODE’s – EXPLICIT EULER
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INTEGRATION OF ODE’s – EXPLICIT EULER

( ) oyyyy == 0   with               λ&

Consider the following scalar problem

We note that the analytical solution to this problem is 

We now use the Euler Method to find a numerical solution 

Explicit Euler Method:

t
oeyty λ=)(

nnn yhyy λ+=+1
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INTEGRATION OF ODE’s – EXPLICIT EULER
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INTEGRATION OF ODE’s – IMPLICIT EULER
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Considering the Taylor series expansion of y(t) at tn=tn+1-h

Denoting the numerical approximation of y(tn) as yn, and 
recalling that

the time integration based on the first two terms of the series 
expansion is given by 

Implicit Euler Method( )111 , +++ += nnnn tyhfyy

( )11
'

1 , +++ = nnn tyfy

NOTE: Difficult to implement when f is nonlinear in y(t)

Lecture22b.m
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INTEGRATION OF ODE’s – IMPLICIT EULER

( ) oyyyy == 0   with               λ&

Consider the following scalar problem

We note that the analytical solution to this problem is 

We now use the Euler Method to find a numerical solution 

Implicit Euler Method:

t
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INTEGRATION OF ODE’s – IMPLICIT EULER
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INTEGRATION OF ODE’s – CRANK-NICHOLSON

The formal solution of 

Over the interval  [tn, tn+1] is given by

Crank-Nicholson Method[ ]),(),(
2 111 +++ ++= nnnnnn tyftyfhyy

( )∫
++=+

1 ,1
n

n

t

tnn dttyfyy

( )tyf
dt
dy ,=

Approximating the integral with the 
trapezoidal rule

( )
2

),(),(, 111 +++
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+ nnnnt

t

tyftyfhdttyfn

n

We obtain a new integration method:

)(tf

tnt 1+nt

Lecture22c.m
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INTEGRATION OF ODE’s – CRANK-NICHOLSON

( ) oyyyy == 0   with               λ&

Consider the following scalar problem

We note that the analytical solution to this problem is 

We now use the Euler Method to find a numerical solution 

Crank-Nicholson Method:

t
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INTEGRATION OF ODE’s – CRANK-NICHOLSON
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INTEGRATION OF ODE’s - STABILITY
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EXPLICIT EULER IMPLICIT EULER CRANK-NICHOLSON
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INTEGRATION OF ODE’s - STABILITY

( ) oyyyy == 0   with               λ&

Consider the following scalar problem

Example: Explicit Euler Method

Thus, assuming h constant, the solution at time step n is

( ) λσσλ hyyhy o
n

o
n

n +=⇒≡+= 11

For large n, the numerical solution remains stable iff

( ) ( ) IRIR ihh λλλλλσ +=≤++⇒≤  assuming     111 22

( ) nnnn yhyhyy λλ +=+=+ 11
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INTEGRATION OF ODE’s - STABILITY

( ) oyyyy == 0   with               λ&

Consider the following scalar problem

Explicit Euler Method – Stability Region:
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hRλ

hIλ Stability.m
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INTEGRATION OF ODE’s - ACCURACY

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Time Step h=0.50

t

analytical
numerical 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Time Step h=0.50

t

analytical
numerical 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Time Step h=0.50

t

analytical
numerical 

EXPLICIT EULER IMPLICIT EULER CRANK-NICHOLSON



9

ME242 - Spring 2005 - Eugenio Schuster 297

INTEGRATION OF ODE’s - ACCURACY

( ) oyyyy == 0   with               λ&

Consider the following scalar problem

Example: Explicit Euler Method:

( ) nnnn yhyhyy λλ +=+=+ 11

( )non hyy λ+= 1

Exact Solution:
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By comparison, the leading error is proportional to h2
EXPLICIT EULER is first-order accurate


