ME242 - MECHANICAL ENGINEERING SYSTEMS

LECTURE 20:

e Linearization 5.4
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LINEARIZATION - nt" ORDER ODEs

State Variable Representation:

dx
— = f(x,u
0 (x,u)
_'xl_ _ul_ _fi—
X = x.2 JU = u.2 , f = f2
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LINEARIZATION - nt" ORDER ODEs

State Variable Representation:
dx
—=f (x, u)
dt

The equilibrium solution is given by

x,u: 0=f(x,u)
0] [ £i(x,%,,....X, L_tl,ﬁz,...,ﬁm)_
0 _ (x1’x29 po U Uy s "L_lm)
0] | £o(X, %5500 X, 1,000, ).
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LINEARIZATION - nth ORDER ODEs

We define the perturbation variables as
. *
X=X+X

. %
Uu=u-—+u

Then we can write

dx
= f(xa u)
dt

as (by Taylor series expansion)

de _dy dx'_ ./ of
= = +
i St a7 (/%) Ox|x-

x=x ou

X=X
u=u
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LINEARIZATION - nt" ORDER ODEs

After neglecting the HOT, we have

d %
x * %
——=Ax + Bu
dt
A KA -
Ox, 0Ox, Ox, Ou, Ou, ou,,
Ly L% L%y | %O
Taxes | M On O o PGt O G O
o o Y o o Yy
| Ox, Ox, ox, | B | Ou, Ou, ou,, | B
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LINEARIZATION - nt» ORDER ODEs
Examples:
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LINEARIZATION - PHASE PLANE

State Variable Representation:

ax @
dt :|:jr1(xlax2)j| - dt :{Au A12:||:xlj|
@ fZ(xl’x2) Linearization & A21 A22 X
dt around an dt

equilibrium

The solution of the linearized equation can be written as:

eigenvector eigenvalue
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LINEARIZATION - PHASE PLANE

State Variable Representation:

dt :{fl(x1:x2):| N dt :|:A11 A12:||:xl:|
dax, f>(x,%,) dx, Ay Ap | X,

Linearization

dt around an dt

equilibrium

The solution of the linearized equation can be written as:

eigenvector eigenvalue
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LINEARIZATION - PHASE PLANE

Eigenvalues and Eigenvectors:
Av=Av
Solution?: Av=Alv
(AUU-AW=0
A non-trivial solution requires
det(A/ —4)=0 =2

Known A we can compute v from

(AU-Ap=0 =v
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LINEARIZATION - STABILITY

*

dx dx * X Vin | a W | 4
—=f(x) > —=4Ax = =¢ e +c, e
dt Linearization 4! Solution %2 Via Voy
around an
equilibrium

If the linearized system is strictly stable (i.e., if all eigenvalues of A are strictly
in the left-half complex plane), then the equilibrium point is asymptotically
stable (for the actual nonlinear system)

If the linearized system is unstable (i.e., if at least one eigenvalue of A is strictly
in the right-half complex plane), then the equilibrium point is unstable (for the
actual nonlinear system)

If the linearized system is marginally stable (i.e., if all eigenvalues of A are in
the left-half complex plane, but at least one of them is on the imaginary axis),
then one cannot conclude anything from the linear approximation (the
equilibrium point may be stable, asymptotically stable or unstable for the actual
nonlinear system)
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LINEARIZATION - PHASE PLANE

Examples:
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