ME242 - MECHANICAL ENGINEERING SYSTEMS

LECTURE 16

e Review - Test 1
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SOURCE-LOAD SYNTHESIS
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SOURCE-LOAD SYNTHESIS

Induction Motor <> Water Sprinkler
M -

load characteristics, .-

2.5

thirtieth floor
twentieth floor

tenth floor
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@, rad/s
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M Induction M Load
¢' Motor ¢ System
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SOURCE-LOAD SYNTHESIS: STABILITY
Induction Motor «<» Water Sprinkler
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GENERALIZED FORCES AND VELOCITIES

Power is the product of two conjugate variables

Power = effort (generalized force) x flow (generalized velocity)

U
ANALOGIES (SIMILARITIES)

Source

POWER BOND

P Characteristic
ower

Conjugate
Characteristic .
Variables
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GENERALIZED FORCES AND VELOCITIES

effort or generalized force

----labeled as "e" or "p"

flow or generalized velocity

---labeled as either "f" or "'q"

Power = effort x flow

P=eq
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GENERALIZED FORCES AND VELOCITIES

Convention:

« Effort variable written above a horizontal bond or to the left of
a vertical bond
* Flow variable written below a horizontal bond or to the right of
a vertical bond

e
q

e q

* The half arrow on the bonds indicate the direction that power
when P>0
* The half arrow should be placed on the flow side of the bond

ME242 - Spring 2005 - Eugenio Schuster

Case study of last class:

Induction M Load
Motor ¢ System

Generalization:

e
Source @ /\ @ Resistance

emanate power \q/ dissipate power

Any energy type:

-Mechanical (rotational, lateral, longitudinal)
-Fluid

-Electrical
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GENERALIZED SOURCES, SINKS, RESISTANCES




INDEPENDENT EFFORT SOURCES AND SINKS

EFFORT:

An independent-effort source (usually called simply an effort
source), and a independent-effort sink (usually called simply an
effort sink), are defined to have efforts that are independent of
their flows.

- e= e(t) effort source : Se

effort sink : Se

They are the SAME!!!

Effort SINK = Effort SOURCE with P<0
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chA

INDEPENDENT FLOWS SOURCES AND SINKS

FLOW:

An independent-flow source (usually called simply a flow source),
and a independent-flow sink (usually called simply a flow sink),
are defined to have efforts that are independent of their flows.

f:f(t) flow source : Sy

flow sink :

Sy
They are the SAME!!!

Flow SINK = Flow SOURCE with P<0
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GENERAL SOURCES AND SINKS (RESISTANCE)

A GENERAL SOURCE can represent any prescribed
(static) relationship between its effort and its flow

S

A GENERAL SINK (RESISTANCE) can represent any
prescribed (static) relationship between its effort and its flow
chA

’

Example

> R

f=flere=e(f)

g=r
M
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LINEAR RESISTANCES
Examples:
(a) electrical resistance
—i R
ef —=R  e=Ri
q (b) fluid resistance

TTL T

(¢) translational dashpot linear fluid resistance

Frrr Sy,

- v
7 g W%

==  —f—r F=Rr: R-b
X X
(d) rotational dashpot thin film of fluid
b
M -
—-—,—-¢ R M=R¢, R=b

. M M

(a) linear ¢ 4
classical symbol physical example bond graph relationship
Rq

Algebra is never included within a bond graph!
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The algebraic relationship is written separately
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DYNAMIC SYSTEMS

So far, we have introduced:

SOURCES Emanate Energy | Steady or Equilibrium
RESISTANCES Dissipate Energy Systems

We need new players to be able to represent

COMPLIANCES Store Energy Unsteady or Dynamic
INERTANCES Store Energy Systems

eDynamic physical systems contain mechanisms that store energy
temporarily, for later release.

e The dynamics can be thought of as a sloshing of energy between
different energy storage mechanisms, and/or a gradual dissipation of
energy in resistances.
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M

GENERALIZED VARIABLES

Generalized Velocity or Flow: f
Generalized Displacement: q
f=q, or q=| fat
Generalized Force or Effort: e
Generalized Momentum: P

e=p, or p:jedt

P=cof =ej=jf
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ENERGY STORAGE: LINEAR COMPLIANCE

e
F—=C !

Energy Storage:

Work from point 1 to point 2:

_2,_2dq_‘12 _‘Izl _1 q2_122
Wi, —_L eth—L egdf—qu edq —Ll Eqdq iq —%(% —4 )
Work from point 2 to point 1:

1
W, =—(q12 —q22)=—WHZ The energy is conserved!

2C
Potential Energy:

Vz—qz:lCe2 = W

20C 7 1-2 — VZ_VI

15
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ENERGY STORAGE: LINEAR INERTANCE

e=p 1
7 _
q J=P

Energy Storage:
Work from point 1 to point 2:

P> 1

=~ (p2-p?)

21

Wi = f pfdt= fi?:fdt—j fdp jpp—zllp

P

Work from point 2 to point 1:

1
W, = 57 (pl p§)=—WHz The energy is conserved!

Kinetic Energy:

=1, -1,

152
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ENERGY STORAGE: COMPLIANCE & INERTANCE

compliance inertance
strain gravity
E / d
5 F F
1 m. E | — e
X . ek B L./‘
C=1/k C=L°/3EI C=1/Apg f=m
M M N4
3| Sowwy So—t S0
g ¢ b ¢
C=1/k C=2L/m*G C~1/mgr I=15 mr?
P e
B 7’:[ i e
= o
c=V,/p Pllo C=A/pg I=pl./A

&
}

17
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JUNCTIONS

Elements introduced so far - ONE PORT

S,S..S,.R,C,I

At termination (beginning or end)

JUNCTIONS: e Branching
e Constraints

POWER CONSTRAINT: The junction e, f2
is IDEAL, neither storing, creating, A
nor dissipating energy €, J €,
ypr-o=yrp -¥r, %0
124 ou .
en fn
efitef=ef;++e,f, '
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JUNCTIONS: 1-JUNCTION

COMMON FLOW CONSTRAINT: e,

hi=fi=fi==ti=f —

POWER CONSTRAINT:

efitef,=ef;+te,f,

Then, we have

Zein = Zeout
or
Ze:O

The common flow - sum of effort junction
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e+e, =e+-+e =
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JUNCTIONS: 0-JUNCTION

COMMON EFFORT CONSTRAINT: f2
y
81282263:’”28 :e e
n > -
7077
POWER CONSTRAINT: f .t
y

efitef,=efi++e,f,
D=2 S

Then, we have

h+fhHh=h++f = or

>r=0

The common effort — sum of flow junction
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o)

= I=m
C' Lk

5
fj'.' - L [
pﬂ""
I=plid, l
|<— I —1-'-' oL R
F T E—AI-.-'FF"E
————————

1-JUNCTION: SIMPLE IRC MODELS

k

"qlu R :lgi.l.f_.-::d
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0-JUNCTION: SIMPLE IRC MODELS

F . k b I=m )
L w j]_ e R=h
: T C=1/k )
& )
I=r if
' O = R L - . .
{ o N oilCeq P,
=G dey Gr=p/l
A, e
= I=pl/A .
R
s — Qr
3|‘H]]’EJUH plug Ay
1 o
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DYNAMICS

Dynamic behavior of well-posed model with energy storage elements

L |

DIFFERENTIAL EQUATION

Analytical Solution Numerical Solution

Approach: Each independent energy storage element

One first-order differential equation
\2
STATE VARIABLE REPRESENTATION
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CAUSALITY OF EFFORT SOURCES

Effort Source:

S —%— e=e(t),e+e(f)
/
Effort is imposed by the source

The effort e is CAUSED by action of S,

Flow is imposed by...? Whatever system is attached to the bond

The flow f'is CAUSED by system reaction
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CAUSALITY OF EFFORT SOURCES

This Bilateral CAUSALITY can be indicated as:
This is not a power flow concept, it is a CAUSALITY concept

S, ; ILoad

S, causes e  Load causes f

f — fLoad (e)

26




CAUSALITY OF FLOW SOURCES

Flow Source:

S, ; — [ =f().f % [ (e)

Flow is imposed by the source

The flow /" is CAUSED by action of S,

Effort is imposed by...? Whatever system is attached to the bond

The effort e is CAUSED by system reaction
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CAUSALITY OF FLOW SOURCES
This Bilateral CAUSALITY can be indicated as:
—e | e
Sf f ~ or Sfl f ~
—>
This is not a power flow concept, it is a CAUSALITY concept
S —=
£ f Load
S, causes f Load causes e
€= eLoad (f)
28




CAUSALITY

The CAUSALITY is Bilateral

e — |

—
— f /'

Causal stroke

— e /
= |

= '
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CAUSALITY TYPES FOR C AND 1

Differential Causality:

. . . de;
compliance ; —e_i:-i(’,'.;- G; = C-;'i;

qi dt

. di
lnertance ; I#-——L— e; = I;— d
qi Ydt

Integral Causality:

compliance : I%:-—C-g e; = ei(qi) = g—f =G /Q‘-;‘ dt,
T T t

i €;
inertance : —-—|df I; Gi=qd(pi) === — fe; dt
i

ME242 - Spring 2005 - Eugenio Schuster 30




Se AND THE O JUNCTION
Example:
Se
€4, (b)causality added
e, — e S
C— 0 . I ¢
q, q; e|d
|94 : i
e, —+— ¢
R Cl— 0 —1
(a) model o eld %
0 4
_R- 31

S, AND THE 0 JUNCTION

(c) annotation of causal bonds

S The three elements have admittance causality
¢ Their flow respond to an imposed effort

- I
¢ C% 0 p /1 I . . .
dt eﬁf" g € has differential causality.

Causal Output = Derivative of Causal Input

R I has integral causality.

Causal Output = Integral of Causal Input

Element behavior is uncoupled.
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S, AND THE 0 JUNCTION

The state of the inertance and the capacitance
1s determined by ¢, and p, respectively.

e

P =€ éﬂ?l

€
—Ce, > g, =C % Chea 0 57!
dc =L€ <= qc = i ar leO/R
The order of the systems is two R

The flow required of the effort source is

cde e Pr

hEE L TR

33

SfAND THE 1 JUNCTION
Example:
Sf
e 4 (b)causality added
€ € S
- | : f
C 9, q, I T
. e
e,| 4 : 1| 9o
e e
R C— 1 ——1I
9 " — 4o
(a) model :
e4 %
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SfAND THE 1 JUNCTION

(c) annotation of causal bonds

S f The three elements have impedance causality
T Their efforts respond to an imposed flow

el dgo

q./C
G @ l H[
1 9 [ has differential causality.
Rqo C] 0 Causal Output = Derivative of Causal Input

/ C has integral causality.
Causal Output = Integral of Causal Input

Element behavior is uncoupled.
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SfAND THE 1 JUNCTION

The state of the inertance and the capacitance
1s determined by ¢, and p, respectively.

Sf
dc =4, g -[ dq'o
. q /C
Pr=¢ = =1 d tO q 1 I—/I
Ry )4,
The order of the systems is two R

The effort required of the flow source is

e, =I%+Rqo+qc/c
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JUNCTIONS WITH COUPLED BEHAVIORS

S, and the 1 junction: Syand the 0 junction:
> 5
€ dy
1 0

The source does NOT directly determine either the efforts or the
flows on any bonds other than the source bond itself
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JUNCTIONS WITH COUPLED BEHAVIORS

Syand the 0 junction: .« 1n this case, the source does NOT directly determine
the effort associated with the 0-Junction

e How? One bond will have its causal stroke adjacent
> to the junction. It will imposed flow to the attached
element and will imposed effort to the junction as

reaction.

C<

e Due to the properties of the 0-Junction, the other
bonds will have the causal strokes placed at the
outer end. The effort is imposed by the junction to
these bonds.

S/

-[q e Who does? It must be one of the attached bonds!
0

R

5

, e We have, in this case, three possible patterns!

] ]
(= | 0 ’|I e Which one do we use? We use INTEGRAL
CAUSALITY! C or I with stroke adjacent to junction?

de 1
C: =Ce=>g=C— or e=—|qdt
q e=¢q d r e C'[q

Admittance £ ':l
Causalty R | R° dq 1
ausality I: p=lj=e=p=1— or qzyjedt
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JUNCTIONS WITH COUPLED BEHAVIORS

S, and the 1 junction:

In this case, the source does NOT directly determine
the flow associated with the 1-Junction

S,
L e Who does? It must be one of the attached bonds!
€
e How? One bond will have its causal stroke at the
C< 1 - ] outer end of the junction. It will imposed effort to
the attached element and will imposed flow to the
l junction as reaction.
e Due to the properties of the 1-Junction, the other
R bonds will have the causal strokes adjacent to the
S junction. The flow is imposed by the junction to
¢ these bonds.
e X S )
e We have, in this case, three possible patterns!
C | 1 i
< 1 1 21 e Which one do we use? We use INTEGRAL
CAUSALITY! C or I with stroke adjacent to junction?
d: 1
C: q=Ce:q':Cf or ez—J.th
Impedance R e=Rq [d' ¢ |
Causality . . . q .
I: =lg=e=p=1— or ¢g=—|edt
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Second Order Problem: IRC Model
A S f
qy X 14,
/ /
(< 0 =1 C< | 0 I[
I “1
/ /

(a) model
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(b) integral causality added
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SfAND THE 0 JUNCTION

5 5

X 14, X 14,

/ /
qc/C| @ I qC/C @

C< 0 1 C 0 ﬁ'[

! pl/[/l @ p 1
q./C q./RC

A A

R R

41

SfAND THE 0 JUNCTION
The state of the inertance and the capacitance

is determined by ¢, and p, respectively.
P, =q./C Go=q,—p,/I1—q./RC

: . : S,

There are two state differential equations.

The order of the system is two. -[q
0

.  q./Clqc/RC
The effort required of the flow source 1s

=

e, =q./C

42
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S, AND THE 1 JUNCTION

S, S,
e, €
A I AL I
/ /
R R
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S, AND THE 1 JUNCTION

S, S,
€, € X

y

qc /G -+ @ qc/Cy @
C< 1 CH 1 ﬁl]
I_l_ p17| - i/
Rp, /1\p,/1
y y
R R

(c¢) annotation of causal bonds  (d) annotation completion
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S, AND THE 1 JUNCTION

The state of the inertance and the capacitance
1s determined by ¢, and p, respectively.

pr=¢—-4:./C—Rp, /1 ge=p, /1

S,
There are two state differential equations. | |
The order of the system is two. q o OJL
1 —=] — /
Rp, I|p, /1

The flow required of the effort source1s &

fe:pl/]

ME242 - Spring 2005 - Eugenio Schuster
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FIRST ORDER DIFFERENTIAL EQUATIONS

dx dx 1
~+ )& +— t
Tt (@) PR f@)

Forcing Term: £, (%) Initial Condition: x(O) =X

x(2) = xy (1) +xp(2)

} L Lodx 1 L
1- Homogeneous Solution: d;I +;XH =0:>xH(t)=Ae T

. : dx,
2- Particular Solution: xp(t): 74_ fz(f)

x(t)=x,(t)+x,(2) = Ae T+ xp(1)

3- Initial Condition:  x(0)=A+x,(0)=x, = A=x, —x,(0)
t

x(1)=(x, = xp(0))e 7 +x,(0)
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FIRST ORDER DIFFERENTIAL EQUATIONS

t t
N x t J—
x(t)=x,(t)=x,e " < h(t) :L):e ‘
xO
1.0
.
0.8 \ o>0 Stable
- - E;n o<0 Unstable
h(n) 1
0.4 ___g\‘____%
1 N e ~
LS T A r= 1 Time Constant
“+ “‘-\_\R‘ o
% 10 20 30 40
T Time (sec)
t=1 @)
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FIRST ORDER DIFFERENTIAL EQUATIONS

_t x(t) _t
xt)=xy(t)=xe " < h(t)=—"=¢"
xO
1.0
) 1 -
0.8 h(it)=——e*
. exp(-t/7) r=RC or rt=IR T
0.6f 1 U
. 1
0.4} ; h(0)=—~
.
0.2
aF 05 10 15 20 25 30,,35 40
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SECOND ORDER DIFFERENTIAL EQUATIONS

Ll rap=f0e dx adv q —fz(t)—ff(t)

a
2 dr? ar a2 d a,
o, = f@ 2
"Va, dx
R I A ()
o a | ar " dt
2\aya
These equations are derived from the RIC models
Solution: x() =x,(t)+x,()
‘\\ Particular solution
Homogeneous solution
2
X
Homogeneous Solution: d sz +2¢w d—H+ w'x, =0
dt "odt !
d*x dxp
Particular Solution: a7 "+ 260, W +, X = /()

ME242 - Spring 2005 - Eugenio Schuster

SECOND ORDER DIFFERENTIAL EQUATIONS
Homogeneous Solution: dzsz +2¢0, dfo + a),fo =0
dt dt
Characteristic Equation: s*+26m,s+w) =0 0=se "
(+co,f +all-g)=0 X
(s+a)2 +w; =0 :
(s+o+jo,)\s+0—jw,)=0 T I T Rew
U
51, = =0+ jo, =—gm, + j\¢* 1w,
o=, S @ :\fa)i o’ @, Undamped natural frequency
o, =w1-¢° § = 7” < Damping ratio
x, (1) =Ce" +Ce™
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SECOND ORDER DIFFERENTIAL EQUATIONS

Different real poles: x, (1)=Ce"" +C,e™
¢>1
Equal real poles: x, (1) =Ce" + C,te™
¢=1

Complex conjugate poles: X, (¢) = e " [C, cos(w,t) + C, sin(w,t)]
0<¢ <l
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SECOND ORDER DIFFERENTIAL EQUATIONS
2
thzc+2ga)n?;+a)jx:ﬁ(t)

Forcing Term: f,(¢) Initial Conditions: x(0)= x

x(8) = xp () + xp(2)

0’ X(O) = xa

d’x dx
1- Homogeneous Solution: X : ——- + 2¢m, — = + w.x,; =0
dt dt
d’x dx
2- Particular Solution: Xp i ——+ 260, —F + @ xp = f,(1)
dt dt
x(1) = x, (1) +xp(0)
3- Initial Conditions: x(()): X, x(o): X,

x(1) = x, (1) +xp(2)




LAPLACE TRANSFORM - DEFINITION

Function f(?) of time

Piecewise continuous and exponential order |f (7)< K"

F(s)= [ f(t)e *dt El[F(s)]=f<r)=2%9. JJ F(s)e" ds

0- a— jo
0- limit is used to capture transients and discontinuities at =0

s is a complex variable (c+jo)

There is a need to worry about regions of convergence of
the integral
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LAPLACE TRANSFORM - TABLE

Signal Waveform Transform
impulse 0] 1
step u(t) !
S
ramp tu(t) %
S
exponential e ut) R
Nan?4
damped ramp e~ (o) ﬁ
sine sin( St )u(t) )
: S
cosine cos( At )u(?) e
S
damped sine —at . B
e “ sin( Bt u(r) (s+a)2+ﬂ2
damped cosine —at sta
e cos(ft)u(t) 7(s+a)2+ﬂ2
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LAPLACE TRANSFORM PROPERTIES

Linearity: (absolutely critical property)

L{AR () + Bfy (1)} = ALLf, (1)} + BL{f, ()} = AF{(s) + BFy(s)

t
Integration property: L{jf(f)dr}:F(S)
S

Differentiation property: {df(t)} sF(s)— f(0-)

BEI0
dt

} s2F(s)— s (0-) = £'(0-)

ﬁ {d’"f(t)
ar"

} = s"F(s)—s" (0 =52 £1(0-) == ™ (0-)

ME242 - Spring 2005 - Eugenio Schuster.
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LAPLACE TRANSFORM PROPERTIES
Translation properties:

s-domain translation: Lie“ft)=F(s+a)

t-domain translation: L{f(t—a)u(t—a)}:e*’”F(s) for a>0

Initial Value Property: lim f(¢)= lim sF(s)

t—0+ §—00

Final Value Property: tlim f@= 1ir%SF(S)
—>0 S—>
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Laplace transforms

)

g
£
S / Differential Laplace Algebraic
= \_equation transform £ equation
g
s
5
< / Classical Algebraic
2 \techniques techniques
=
Response Inverse Laplace Response
signal transform £ transform

The diagram commutes
Same answer whichever way you go
57
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MODEL REPRESENTATION

Scalar Differential Equation

n n—1 m m—1
ndy+an_1d y+---+ald—y+a0y=me+bm_1d7_tll+---+b1@+bou
dt" dt" dt dt" dt" dt

L{d"’fm(’)}:smF(s),sm—lf(o,),Sm—Z_,-f(O,),4..,.,-<m>(0,) l [, | Forcing function u(?)
dt Initial Conditions

a

Rational Function
b,s" +b, s"" +--+bs+b,
a,s"+a, "+ +as+a,

}

Partial Fraction Expansion
a, a, a3 a3 A3 %,
+ + + + +..+
(s=p) (s=p) -p) (s-pf (-p) ~ (s-p,)

b

()

Y(s)=

Y(s)=
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RESIDUES

Residues at simple poles:
k; = lim(s = p,)F(s)
S p;
Residues at multiple poles:

= Iim
(m=D!s 5 qgem—1

m

[(s—a)nV(s)}, m=1---n

Residues at complex poles = Residues at simple poles

ME242 - Spring 2005 - Eugenio Schuster 59

NOT STRICTLY PROPER LAPLACE TRANSFORMS

Rational Function

m m—1
Y(s):b’”s +b, 8" +--+bs+b,

n n—1
as"+a, s +--+as+a,

l Polynomial Division

Rational Function
b,s? +b, s+ +bs+b,
Y(s) = a(s) + Lot 22

n n—1
ans +an_1S +~~~+a1S+a0
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STATE VARIABLE — SCALAR FORM

State Variable Representation

dx —
— =Ax+ Bu This is the outcome of the
dt bondgraph modeling process

y=Cx+Du

Scalar Differential Equation

n n—1 m m—1
anﬂﬂzH d y+---+a1d—y+a0y:me+bm71d—_zf+---+bld—u+bou
dt" dt" dt dt™ dt™ dt
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