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ME242 – MECHANICAL ENGINEERING SYSTEMS

LECTURE 13:

• Laplace transform 7.2
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Function f(t) of time
Piecewise continuous and exponential order 

0- limit is used to capture transients and discontinuities at t=0
s is a complex variable (σ+jω)

There is a need to worry about regions of convergence of 
the integral

Units of s are sec-1=Hz

A frequency

If f(t) is volts (amps) then F(s) is volt-seconds (amp-seconds)

LAPLACE TRANSFORM - DEFINITION
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LAPLACE TRANSFORM – TABLE
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LAPLACE TRANSFORM PROPERTIES
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LAPLACE TRANSFORM PROPERTIES
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Translation properties:

s-domain translation:

t-domain translation:
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Laplace transforms

The diagram commutes
Same answer whichever way you go

Linear
cct

Differential
equation

Classical
techniques

Response
signal

Laplace
transform L

Inverse Laplace
transform L-1

Algebraic
equation

Algebraic
techniques

Response
transform
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INVERTING LAPLACE TRANSFORM IN PRACTICE

We have a table of inverse LTs
Write F(s) as a partial fraction expansion

Now appeal to linearity to invert via the table
Surprise!
Nastiness: computing the partial fraction expansion is best 

done by calculating the residues
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RATIONAL FUNCTIONS

We shall mostly be dealing with Laplace Transforms
which are rational functions – ratios of polynomials in s

pi are the poles and zi are the zeros of the function

K is the scale factor or (sometimes) gain

A proper rational function has n≥m
A strictly proper rational function has n>m
An improper rational function has n<m
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RESIDUES AT SIMPLE POLES
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Functions of a complex variable with isolated, finite 
order poles have residues at the poles

Residue at a simple pole:
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Exercise: Find the Laplace transform V(s)
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Exercise: Find the Laplace transform V(s)
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What about v(t)?

RESIDUES AT SIMPLE POLES
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RESIDUES AT MULTIPLE POLES
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Let us assume that V(s) has a pole of order n at s=-a

Residues at a multiple pole:
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RESIDUES AT MULTIPLE POLES
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RESIDUES AT COMPLEX POLES

Compute residues at the poles

Bundle complex conjugate pole pairs into second-
order terms if you want. But you will need to be 
careful!

Inverse Laplace Transform is a sum of complex 
exponentials
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RESIDUES AT COMPLEX POLES
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NOT STRICTLY PROPER LAPLACE TRANSFORMS

Find the inverse LT of

Convert to polynomial plus strictly proper rational function
Use polynomial division

Invert as normal
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