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ME242 – MECHANICAL ENGINEERING SYSTEMS

LECTURE 11:

• Solutions of Linear Differential Equations 3.5
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FIRST ORDER DIFFERENTIAL EQUATIONS
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These equations are derived from the RC and IR models
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FIRST ORDER DIFFERENTIAL EQUATIONS
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FIRST ORDER DIFFERENTIAL EQUATIONS
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DYNAMIC MODELS

Example:
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Fluid System

Shared Variable?
Pressure (effort)

Type of junction?
0-Junction

Type of behavior?
Coupled
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DYNAMIC MODELS

Examples:
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a- Model b- Causality added c- Annotation causal bonds
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DYNAMIC MODELS

Examples: Fluid System
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SECOND ORDER DIFFERENTIAL EQUATIONS
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These equations are derived from the RIC models
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SECOND ORDER DIFFERENTIAL EQUATIONS

Homogeneous Solution:

Initial Conditions: ( ) ( ) oo xxxx && == 0    ,0
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Characteristic Equation:

:
:

ζ
ωn Undamped natural frequency

Damping ratio
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SECOND ORDER DIFFERENTIAL EQUATIONS
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SECOND ORDER DIFFERENTIAL EQUATIONS
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SECOND ORDER DIFFERENTIAL EQUATIONS

Homogeneous Solution:

Initial Conditions: ( ) ( ) oo xxxx && == 0    ,0
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DYNAMIC MODELS
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Example: RLC Series
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Shared Variable?
Current (flow)

Type of junction?
1-Junction

Type of behavior?
Coupled
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DYNAMIC MODELS
Example: RLC Series

Se

1

0e

I

R

C

I
pRp

C
qe

I
pq

I
I

C
o

I
C

++=

=

&

&

a- Model b- Causality added c- Annotation causal bonds
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DYNAMIC MODELS
Example: RLC Series
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DYNAMIC MODELS
Example: RLC Series
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